The exit nozzle in a jet engine receives air at 1200 K, 150 kPa with negligible kinetic energy. The exit pressure is 80 kPa, and the process is reversible and adiabatic. Use constant specific heat at 300 K to find the

Answers

Answer 1
Answer:

Complete question:

The exit nozzle in a jet engine receives air at 1200 K, 150 kPa with negligible kinetic energy. The exit pressure is 80 kPa, and the process is reversible and adiabatic. Use constant specific heat at 300 K to find the exit velocity.

Answer:

The exit velocity is 629.41 m/s

Explanation:

Given;

initial temperature, T₁ = 1200K

initial pressure, P₁ = 150 kPa

final pressure, P₂ = 80 kPa

specific heat at 300 K, Cp = 1004 J/kgK

k = 1.4

Calculate final temperature;

T_2 = T_1((P_2)/(P_1))^{(k-1 )/(k)

k = 1.4

T_2 = T_1((P_2)/(P_1))^{(k-1 )/(k)}\n\nT_2 = 1200((80)/(150))^{(1.4-1 )/(1.4)}\n\nT_2 = 1002.714K

Work done is given as;

W = (1)/(2) *m*(v_i^2 - v_e^2)

inlet velocity is negligible;

v_e = \sqrt{(2W)/(m) } = √(2*C_p(T_1-T_2)) \n\nv_e = √(2*1004(1200-1002.714))\n\nv_e = √(396150.288) \n\nv_e = 629.41  \ m/s

Therefore, the exit velocity is 629.41 m/s


Related Questions

Hercules X-1 is a pulsating X-ray source. The X-rays from this source sometimes completely disappear for 6 hours every 1.7 days because the neutron star has a 1.7-day orbital period around its companion star, and it is eclipsed for ____ hours once every orbital period.
A 50-gram ball is released from rest 80 m above the surface of the Earth. During the fall to the Earth, the total thermal energy of the ball and the air in the system increases by 15 J. Just before it hits the surface its speed is
A 2500 kg car traveling to the north is slowed down uniformly from an initial velocity of 27.0 m/s by a 7850 N braking force acting opposite the car’s motion. What is the car's velocity after 2.52s?How far does the car move during the 2.52 s?How long does it take the car to come to a complete stop?
Why are continental rocks much older than oceanic crust?A. Oceanic crust is continually recycled through convection in the earth's mantleB. Oceanic crust is made out of much less dense material than continental crustC. Continental crust is continually renewed through convection in the earth's mantleD. Continental crust eats oceanic crust for breakfast
The graph to the right shows the change in Canada‘s harvest of Atlantic cod from 1950-2004 what year shows the clearest evidence of a collapse of fishing stocks?A.1965B.1985C.1995D.2005

Energy can be transferred from a closed system to the surroundings by: (A) Internal chemical reactions (B) Heat (C) Shaft work (D) Change in pressure without changing volume (E) Mass transfer

Answers

Answer:

option the correct is B

Explanation:

Let's analyze the different options, for a closed system

- an internal reaction changes the system, but does not affect the surrounding environment

- Heat, is a means of transfer that occurs when two bodies are in contact, one of the body can be a closed system since the only thing that happens is thermal transfer, without movement of the system itself. This is the correct result.

- Work implies a movement whereby the system must be mobile, it is not an option

- Pressure change. change in the system, but does not affect the environment

- Mass transfer is not possible in a closed system

After analyzing each option the correct one in B

The equations for single-slit and multiple-slit interference both contain the variable θ. For the multiple-slit case, the angle is: a. the angular location of the first order minimum in the diffraction pattern. Which means at this point the light experiences constructive interference.
b. the angular location of the first order minimum in the diffraction pattern. Which means at this point the light experiences destructive interference.
c. the angular location of bright interference maxima in the pattern. Which means at this point the light experiences constructive interference.
d. the angular location of bright interference maxima in the pattern. Which means at this point the light experiences destructive interference.

Answers

Answer:

the answers the correct one is c

Explanation:

The diffraction pattern for a slit is

         a sin θ = m λ

Where a is the width of the slit, λ the wavelength, m the order of destructive interference and θ the angle where the interference occurs.

The expression for multi-slit diffraction (diffraction grating) is

          d sin θ = m λ

Where d is the distance between slits, λ the wavelength m the order of the diffraction maximums and θ the angle for these maximums.

When we compare the expressions of the answers the correct one is c

What is the correct formula for barium nitride? A. Ba3N2,
в. BaN
с. Ва2N3
D. Ba2N

Answers

The formula for barium nitride is Ba(NO3)2

Which of these 23rd chromosomecombinations is likeliest to result in a
person with male and female traits?
ΧΟ
XXX
XXY
XY

Answers

Sorry if I’m wrong but I think it’s XO since o is not a sex chromosome

The height h (in feet) of an object shot into the air from a tall building is given by the function h(t) = 650 + 80t − 16t2, where t is the time elapsed in seconds. (a) Write a formula for the velocity of the object as a function of time t.

Answers

Answer:

80 - 32t

Explanation:

The height, h, in terms of time, t, is given as:

h(t) = 650 + 80t − 16t²

Velocity is the derivative of distance with respect to time:

v(t) = dh(t)/dt = 80 - 32t

Final answer:

The velocity of the object as a function of time is given by the derivative of the height function, which is v(t) = 80 - 32t.

Explanation:

The height h(t) of an object is given by the equation h(t) = 650 + 80t − 16t2. To find the velocity v(t), we need to take the derivative of h(t) with respect to time t. Using the power rule, we get:

v(t) = dh/dt = 0 + 80 - 32t.

So, the velocity of the object as a function of time t is v(t) = 80 - 32t.

Learn more about Velocity Function here:

brainly.com/question/33157131

#SPJ11

A 0.120 kg baseball, thrown with a speed of 38.4 m/s, is hit straight back at the pitcher with a speed of 47.3 m/s. (a) What is the magnitude of the impulse delivered by the bat to the baseball? kg · m/s (b) Find the magnitude of the average force exerted by the bat on the ball if the two are in contact for 2.20 10-3 s. kN

Answers

Answer:

10.284 kgm/s

4.674545 kN

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

m = Mass of baselball

Impulse

J=m(v-u)\n\Rightarrow J=0.12(38.4-(-47.3))\n\Rightarrow J=10.284\ kgm/s

Impulse of the baseball is 10.284 kgm/s

Impulse is also given by

J=Ft\n\Rightarrow F=(J)/(t)\n\Rightarrow F=(10.284)/(2.2* 10^(-3))\n\Rightarrow F=4674.545\ N=4.674545\ kN

The magnitude of the average force exerted by the bat on the ball is 4.674545 kN