1. A surfboarder rides a wave for 23.7 m at a constant rate of 4.1 m/s. How long did his triptake?

Answers

Answer 1
Answer:

Answer:

His trip took 5.78 seconds

Explanation:

23.7m divided by 4.1m/s = 5.78048780488


Related Questions

A 2.0 cm thick brass plate (k_r = 105 W/K-m) is sealed to a glass sheet (kg = 0.80 W/K m), and both have the same area. The exposed face of the brass plate is at 80°C, while the exposed face of the glass is at 20 °C. How thick is the glass if the glass brass interface is at 65 C? Ans. 0.46 mm​
Assume that the speed of light in a vacuum has the hypothetical value of 18.0 m/s. A car is moving at a constant speed of 14.0 m/s along a straight road. A home owner sitting on his porch sees the car pass between two telephone poles in 8.89 s. How much time does the driver of the car measure for his trip between the poles?
Which formula can be used to calculate the horizontal displacement of a horizontally launched projectile?x = vi(cos )x = vi(cos )tx = aytx = vxt (RIGHT ANSWER)
If a charge is located at the center of a spherical volume and the electric flux through the surface of the sphere is φ o, what is the flux through the surface if the radius of the sphere doubles?
Boyle's Law states that when a sample of gas is compressed at a constant temperature, the pressure P and the volume V satisfy the equation PV=C, where C is a constant. Suppose that at a certain instant the volume is 600cm3, the pressure is 150 kPa, and the pressure is increasing at a rate of 20 kPa/min. At what rate is the volume decreasing at this instant?

Enunciado: Una bola se lanza verticalmente de la parte superior de un edificio con una velocidad inicial de 25 m/s. La bola impacta al suelo en la base del edificio 7 segundos después de ser lanzada. (Marque la respuesta correcta) ¿Qué altura subió la bola (medida desde la parte superior del edificio)? a) 19.6 m b) 12.75 m c) 31.88 m d) 40 m e) 20 m

Answers

La altura vertical máxima alcanzada es de 31,88 m.

Tenemos la siguiente información de la pregunta;

Velocidad inicial = 25 m/s

Velocidad final = 0 m/s (a la altura máxima)

tiempo empleado = 3,5 minutos (el tiempo empleado para subir y bajar es igual).

Usando la ecuación;

v^2 = u^2 - 2gh

Dado que v = 0

u^2 = 2gh

h = tu^2/2g

h = (25)^2/2 *9.8

h = 31,88 m

Obtenga más información sobre las ecuaciones de movimiento: brainly.com/question/8898885

The subject of this question is kinematics. The ball reached a height of 65.1 meters.

To determine the height that the ball reached, we can use the kinematic equation for vertical motion:

Final height = Initial height + Initial vertical velocity * Time + (1/2) * Acceleration * Time^2

In this case, the initial height is the height of the building, the initial vertical velocity is 25 m/s, the time is 7 seconds, and the acceleration is -9.8 m/s^2. Plugging in these values, we get:

Final height = 0 + 25 * 7 + (1/2) * (-9.8) * 7^2 = 0 + 175 - 240.1 = -65.1.

Since the ball is at ground level, the height it reached is the negative of the calculated value, so the correct answer is 65.1 m.

For more such questions on kinematics, click on:

brainly.com/question/26407594

#SPJ6

You spray your sister with water from a garden hose. The water is supplied to the hose at a rate of 0.111 liters per second and the diameter of the nozzle you hold is 5.79 mm. At what speed does the water exit the nozzle

Answers

Answer:

29.5 m/s

Explanation:

Volumetric flowrate = (average velocity of flow) × (cross sectional area)

Volumetric flowrate = 0.111 liters/s = 0.000111 m³/s

Cross sectional Area of flow = πr²

Diameter = 0.00579 m,

Radius, r = d/2 = 0.002895 m

A = π(0.002895)² = 0.0000037629 m²

Velocity of flow = (volumetric flow rate)/(cross sectional Area of flow)

v = 0.000111/0.0000037629

v = 29.5 m/s

Given Information:  

diameter of the nozzle = d = 5.79 mm = 0.00579 m

flow rate =  0.111 liters/sec

Required Information:  

Velocity = v = ?

Answer:

Velocity = 4.21 m/s

Explanation:

As we know flow rate is given by

Flow rate = Velocity*Area of nozzle

Where

Area of nozzle = πr²

where

r = d/2

r = 0.00579/2

r = 0.002895 m

Area of nozzle = πr²

Area of nozzle = π(0.002895)²

Area of nozzle = 2.6329x10⁻⁵ m²

Velocity = Flow rate/area of nozzle

Divide the litters/s by 1000 to convert into m³/s

0.111/1000 = 1.11x10⁻⁴ m³/s

Velocity = 1.11x10⁻⁴/2.6329x10⁻⁵

Velocity = 4.21 m/s

Therefore, the water exit the nozzle at a speed of 4.21 m/s

While leaning out a window that is 6.0 m above the ground, you drop a 0.60-kg basketball to a friend at ground level. Your friend catches the ball at a height of 1.6 m above the ground. Determine the following.(a) the amount of work done by the force of gravity on the ball.(b) the gravitational potential energy of the ball-earth system, relative to the ground when it is released.(c) the gravitational potential energy of the ball-earth system, relative to the ground when it is caught.

Answers

Answer:

a) W = 25.872 J

b) - 35.28 J

c) - 9.408

Explanation:

a) The amount of work done by the force of gravity on the ball = Change in potential energy between the two vertical points = - mg (H₂ - H₁)

F = - mg (gravity is acting downwards)

F = - 0.6 × 9.8 = - 5.88 N

(H₂ - H₁) = (1.6 - 6) = - 4.4 m

W = (-5.88)(-4.4) = 25.872 J

b) Gravitational-potential energy of the ball when it was released relative to the ground = (- mg) H₁ = (- 0.6 × 9.8) × 6 = - 35.28 J

c) Gravitational-potential energy of the ball when it is caught relative to the ground = (-mg)(H₂) = -0.6 × 9.8 × 1.6 = - 9.408 J

Which two types of energy does a book have as it falls to the floor

Answers

Answer:

kinetic and potential energy

Explanation:

A cylinder with a diameter of 2.0 in. and height of 3 in. solidifies in 3 minutes in a sand casting operation. What is the solidification time if the cylinder height is doubled? What is the time if the diameter is doubled?

Answers

Answer:

3 min 55 sec is the solidification time if the cylinder height is doubled

7min 40 sec if the diameter is doubled

Explanation:

see the attachment

Determine whether the following statements are true and give an explanation or counterexample.(A) If the acceleration of an object remains constant, its velocity is constant.
(B) If the acceleration of object moving along a line is always 0, then its velocity is constant.
(C) It is impossible for the instantaneous velocity at all times a(D) A moving object can have negative acceleration and increasing speed.

Answers

Answer:

Explanation:(A)if a body is accelerating then it's velocity can't be constant since an object is said to be accelerating if it is changing velocity (B)if the acceleration of an object moving along a line is 0 then it's velocity will be constant since there is no change in direction or speed(C)No.it is not possible for a moving body to have an instantaneous velocity at all times since instantaneous velocity is the velocity of a body at a certain instant of time..(D)Yes a moving object can have a negative acceleration and increasing speed,it can also have a positive acceleration with decreasing speed.

Other Questions