20 examples of scalar quantity​

Answers

Answer 1
Answer:

Answer:

Length

Time

Mass

Temperature

Energy

Direct Current (DC)

Frequency

Volume

Speed

Amount of substance

Luminous Intensity

Density

Concentration

Refractive Index

Work

Pressure

Power

Charge

Electric Potential

Entropy


Related Questions

Bailey wants to find out which frozen solid melts the fastest: soda, ice, or orange juice. She pours each of the three liquids into the empty cubes of an ice tray, and then places the ice tray in the freezer overnight. The next day, she pulls the ice tray out and sets each cube on its own plate. She then waits and watches for them to melt. When the last part of the frozen liquid melts, she records the time.
A firefighting crew uses a water cannon that shoots water at 27.0 m/s at a fixed angle of 50.0 ∘ above the horizontal. The firefighters want to direct the water at a blaze that is 12.0 m above ground level. How far from the building should they position their cannon? There are two possibilities (d1Part A:d1=_____mPart B:d2=______m
A 2-C charge experiences a force of 40 N when put at a certain location inspace. The electric field at that location is a. 2 N/C.b. 20 N/C. c. 30 N/C. d.40 N/C. e. 60 N/C.
Monochromatic coherent light shines through a pair of slits. If the distance between these slits is decreased, which of the following statements are true of the resulting interference pattern?A) The distance between the maxima stays the same.B) The distance between the maxima decreases.C) The distance between the minima stays the same.D) The distance between the minima increases.E) The distance between the maxima increases.
A stream of water emerging from a faucet narrows as fails. The cross-sectional area of the soutis As -6.40 cm. water comes out of the spout at a speed of 33.2 cm/s, and the waterfalls h = 7.05 cm before iting the bottom of sink What is the cross-sectional area of the water stream just before it is the sink? a. 0.162 cm3 b. 1.74 cm3c. 6.21cm3d. 0.943cm3

Legacy issues $570,000 of 8.5%, four-year bonds dated January 1, 2019, that pay interest semiannually on June 30 and December 31. They are issued at $508,050 when the market rate is 12%.1. Determine the total bond interest expense to be recognized.
Total bond interest expense over life of bonds:
Amount repaid:
8 payments of $24,225 $193,800
Par value at maturity 570,000
Total repaid 763,800
Less amount borrowed 645 669
Total bond interest expense $118.131
2. Prepare a straight-line amortization table for the bonds' first two years.
Semiannual Period End Unamortized Discount Carrying Value
01/01/2019
06/30/2019
12/31/2019
06/30/2020
12/31/2020
3. Record the interest payment and amortization on June 30. Note:
Date General Journal Debit Credit
June 30
4. Record the interest payment and amortization on December 31.
Date General Journal Debit Credit
December 31

Answers

Answer:

1) Determine the total bond interest expense to be recognized.

Total bond interest expense over life of bonds:

Amount repaid:    

8 payments of $24,225:           $193,800    

Par value at maturity:                 $570,000    

Total repaid:                                   $763800 (193,800 + 570,000)  

Less amount borrowed:         $508050    

Total bond interest expense: $255750 (763800 - 508,050)

2)Prepare a straight-line amortization table for the bonds' first two years.

Semiannual Interest Period­ End; Unamortized Discount; Carrying Value

01/01/2019                                      61,950                           508,050  

06/30/2019                                      54,206                          515,794  

12/31/2019                                       46,462                         523,538  

06/30/2020                                       38,718                        531,282  

12/31/2020                                         30,974                          539,026

3) Record the interest payment and amortization on June 30:

June 30            Bond interest expense, dr                         31969  

                       Discount on bonds payable, Cr     (61950/8)  7743.75

                                        Cash, Cr                     ( 570000*8.5%/2)  24225  

4) Record the interest payment and amortization on December 31:

Dec 31                 Bond interest expense, Dr               31969  

                           Discount on bonds payable, Cr  7744  

                                    Cash, Cr                                24225

According to the second law of thermodynamics, it is impossible for ____________. According to the second law of thermodynamics, it is impossible for ____________. heat energy to flow from a colder body to a hotter body an ideal heat engine to have the efficiency of 99% an ideal heat engine to have non-zero power. a physical process to yield more energy than what is put in

Answers

Answer:

It's impossible for an ideal heat engine to have non-zero power.

Explanation:

Option A is incomplete and so it's possible.

Option B is possible

Option D is related to the first lae and has nothing to do with the second law.

Hence, the correct option is C.

The ideal engine follows a reversible cycle albeit an infinitely slow one. If the work is being done at this infinitely slow rate, the power of such an engine is zero.

We can also stat the second law of thermodynamics in this manner;

It is impossible to construct a cyclical heat engine whose sole effect is the continuous transfer of heat energy from a colder object to a hotter one.

This statement is known as second form or Clausius statement of the second law.

Thus, it is possible to construct a machine in which a heat flow from a colder to a hotter object is accompanied by another process, such as work input.

Final answer:

According to the second law of thermodynamics, it is impossible for heat energy to flow from a colder body to a hotter body, for an ideal heat engine to have an efficiency of 99%, and for a physical process to yield more energy than what is put in.

Explanation:

According to the second law of thermodynamics, it is impossible for heat energy to flow from a colder body to a hotter body. This is because heat naturally flows from a region of higher temperature to a region of lower temperature. This principle is what allows us to effectively use heat for various purposes, such as in heat engines.

An ideal heat engine is a theoretical construct used to study the efficiency of engines. The second law of thermodynamics states that no heat engine can have an efficiency of 100%, so it is impossible for an ideal heat engine to have an efficiency of 99%. This is due to the losses in heat transfer and other thermodynamic processes.

The second law of thermodynamics also implies that in any physical process, the total energy cannot increase. It is impossible for a physical process to yield more energy than what is put in. This principle is central to understanding energy conservation and the limitations of energy conversion.

Learn more about Second Law of Thermodynamics here:

brainly.com/question/32826461

#SPJ3

A solid cylinder of cortical bone has a length of 500mm, diameter of 2cm and a Young’s Modulus of 17.4GPa. Determine the spring constant ‘k’. Please explain.

Answers

Answer:

The spring constant k is1.115* 10^(9) N/m

Solution:

As per the question:

Length of the solid cylinder, L = 500 mm = 500* 10^(- 3) = 0.5 m

Diameter pf the cylinder, D = 2 cm = 0.02 m

As the radius is half the diameter,

Radius, R = 1 cm = 0.01 m

Young's Modulus, E = 17.4 GPa = 17.4* 10^(9) Pa

Now,

The relation between spring constant, k and Young's modulus:

kL = EA

where

A = Area

Area of solid cylinder, A = 2\piR(L + R)

0.5k = 17.4* 10^(9)* 2\piR(L + R)

k = (17.4* 10^(9)* 2\pi* 0.01(0.01 + 0.5))/(0.5)

k = 1.115* 10^(9) N/m

Young's modulus, E is the ratio of stress and strain

And

Stress = (Force or thrust)/(Area)

Strain = (length, L)/(elongated or change in length, \Delta L)

Also

Force on a spring is - kL

Therefore, we utilized these relations in calculating the spring constant.

Consider the following statements. A. Heat flows from an object at higher temperature to an object at lower temperature; B. Heat flows from an object in liquid state to an object in solid state; C. Heat flows from an object with higher thermal energy to one with lower thermal energy. Which statements are true? 1. A only 2. A and C only 3. B and C only 4. None is true.

Answers

Only ' A ' is always true. (choice-1)

' B ' is not true when you drop a red hot spoon into cold soup.

' C ' is not true when you drop a red hot marble into a cool swimming pool.

The mass of a baseball is 0.145 kg and its acceleration as it falls to the ground is 9.81 m/s2. How much force is acting on the baseball

Answers

Answer:

The answer is 1.42 N

Explanation:

The force acting on an object given it's mass and acceleration can be found by using the formula

force = mass × acceleration

From the question we have

Force = 0.145 × 9.81 = 1.42245

We have the final answer as

1.42 N

Hope this helps you

A train travels 64 kilometers in 5hours and then 93 kilometers in 2hours. What is it’s average speed?

Answers

I believe the answer is about 22.43 kilometers per hour. However I am not 100% sure.

How I got this: first you add 64 and 93, then 5 and 2. That would leave you with the kilometers traveled (157) over the number of hours (7). You’d have to divide, which would leave you with an estimated 22.4285. Round to the nearest hundredth and you get 22.43 . Please correct me if I’m wrong!