Lab: Weather Patterns

Answers

Answer 1
Answer:

A weather pattern is defined as a period of time when the weather remains consistent. In the lab, a lot of observation about weather is obtained

What is the definition of a weather pattern?

A weather pattern is defined as a period of time when the weatherremains consistent. Weather changes are crucial to humanexistence.

because they influence our everyday activities and provide moisture for crops.

The rain does not always end within the day, and gloomy days might last just as long as sunny days. Tornadoes and hurricanes, for example, may inflict tremendous damage.

In the lab the following observation about weather is obtained;

1. We will find the graphs and statistics that indicate signs of climate change and engage with an interactivegraphic.

2. You'll also look at and debate maps of global temperature and precipitation patterns that are changing.

3. This lab will teach you about Earth's biomes and the close relationship that exists between them and the climates that serve to define them.

To learn more about the  weatherpattern refer to the link;

brainly.com/question/2497685

Answer 2
Answer:

Final answer:

The question pertains to meteorology, climatology, and atmospheric science. These are disciplines that study weather and climate, respectively, and their effects on the planet. Atmospheric Science is a broad field that includes both and employs physics principles.

Explanation:

The question refers to the subjects of meteorology, climatology, and atmospheric science. Meteorology is the study of the atmosphere, atmospheric phenomena, and atmospheric impacts on the Earth's weather. It involves the prediction of weather in the short term based on thousands of measurements of variables such as air pressure and temperature.

Climatology, on the other hand, is the study of climate, which involves analyzing averaged weather conditions over longer time periods using atmospheric data. Unlike meteorologists, climatologists focus on patterns and effects that occur over longer timescales of decades, centuries, and millennia.

Atmospheric Science is a broad field that encompasses both meteorology and climatology, as well as other disciplines that study the atmosphere. This discipline is typically based heavily on physics and involves the study of weather and climate patterns, predictions of developments in weather and climatic events, and the analysis of the effects of these events on the planet and its inhabitants.

Learn more about Weather Patterns here:

brainly.com/question/32220679

#SPJ11


Related Questions

Consider a proton travelling due west at a velocity of 5×10^5m/s. Assuming that the rth magnetic field has a strength of 5x10^-5Tand is directed due south calculate li) the magnitude of the force on the proton (q= 1.6x10^-9C)​
Three resistors are connected in series across a battery. The value of each resistance and its maximum power rating are as follows: 6.7Ω and 15.9 W, 30.4Ω and 9.12 W, and 16.3Ω and 12.3 W. (a) What is the greatest voltage that the battery can have without one of the resistors burning up? (b) How much power does the battery deliver to the circuit in (a)?
Why a switch is connected in phase wire and never is neutral wire?​
A diverging lens has a focal length of -30.0 cm. An object is placed 18.0 cm in front of this lens.(a) Calculate the image distance.(b) Calculate the magnification.
Assume we are given an electric field set up by an unknown charge distribution. U0 is the amount of work needed to bring a point charge of charge q0 in from infinity to a point P. If the charge q0 is returned to infinity, how much work would it take to bring a new charge of 4 q0 from infinity to point P?

The electron gun in an old CRT television accelerates electrons between two charged parallel plates (the cathode is negative; the anode is positive) 1.2 cm apart. The potential difference between them is 25 kV. Electrons enter through a small hole in the cathode, are accelerated, and then exit through a small hole in the anode. Assume the plates act as a capacitor.a. What is the electric field strength and direction between the plates?
b. With what speed does an electron exit the electron gun if its entry speed is close to zero? [Note: ignore relativity]
c. If the capacitance of the plates is 1 nF, how much charge is stored on each plate? How many extra electrons does the cathode have?
d. If you wanted to push an electron from the anode to the cathode, how much work would you have to do?

Answers

Answer:

A. 2.083 MV/m from anode to cathode.

B. 93648278.15 m/s

C. 2.5x10^-5 C and there are about 1.56x10^14 electrons

D. 4x10^-15 Joules

Explanation:

Voltage V across plate is 25 kV = 25x10^3 V

Distance apart x = 1.2 cm = 1.2x10^-2 m

A. Electric field strength is the potential difference per unit distance

E = V/x = 25x10^3/1.2x10^-2 = 2083333.3 V/m

= 2.083 MV/m

B. Energy of electron is electron charge times the voltage across

i.e eV

Charge on electron = 1.6x10^-19 C

Energy of electron = 1.6x10^-19 x 25x10^3 = 4x10^-15 Joules

Mass of electron m is 9.12x10^-31 kg

Kinetic energy of electron = 0.5mv^2

Where v is the speed

4x10^-15 = 0.5 x 9.12x10^-31 x v^2

v^2 = 8.77x10^15

v = 93648278.15 m/s

C. From Q = CV

Q = charge

C = capacitance = 1 nF 1x10^-9 F

V = voltage = 25x10^3 V

Q = 1x10^-9 x 25x10^3 = 2.5x10^-5 C

Total number of electrons = Q/e

= 2.5x10^-5/1.6x10^-19 = 1.56x10^14 electrons

D. To push electron from cathode to anode, I'll have to do a work of about

4x10^-15 Joules

You have devised an experiment to measure the kinetic coefficient of friction between a ramp and block. You place the block on the ramp at an angle high enough that it starts sliding. You measure the time it takes to fall down a known distance. The time it takes to fall down the ramp starting from a standstill is 0.5 sec, ???? = 1 kg, θ = 45o, and the distance it falls, L, is 0.5 m. What is µk? (8 pts)

Answers

Answer:

 μ = 0.423

Explanation:

To solve this exercise we must use Newton's second law and kinematics together, let's start using expressions of kinematics to find the acceleration of the body

Let's fix a reference system where the x axis is parallel to the inclined plane, but the acceleration is only on this axis

            x = v₀ t + ½ a t²

The body starts from rest so its initial speed is zero

            a = 2 x / t²

            a = 2 0.5 /0.5²

            a = 4 m / s²

Taking the acceleration of the body, we use Newton's second law, we take the direction up the plane as positive

  X axis

                fr - Wₓ = m a          (1)

  Y Axis  

               N- W_(y) = 0

                N = W_{y}

We use trigonometry to find the components of the weight

            sin 45 = Wₓ / W

           cos 45 = W_{y} / W

           Wₓ = W sin 45

           W_{y} = W cos 45

The out of touch has the expression

             fr = μ N

             fr = μ W_{y}

We substitute in 1

             μ mg cos 45 - mg sin 45 = m a

             W_{y} = (a + g sin 45) / g cos 45

              μ = a / g cos 45 + 1

We calculate

Acceleration goes down the plane, so it is negative

           a = -4 m / s²

            μ = 1- 4 / (9.8 cos 45)

            μ = 0.423

Answer:

The μ = 0.422

Explanation:

The distance travelled by the mass is equal to:

L=ut+(1)/(2)at^(2)  \n0.5=(0*5)+(1)/(2) a(0.5^(2) )\na=4m/s^(2)

The sum of forces in y-direction equals zero:

∑Fy = 0

N - (m * g * cosθ) = 0

N - (1 * 9.8 * cos45) = 0

N = 6.93 N

The sum of forces in x-direction is equal to:

∑Fx = ma

(m * g * sinθ) - fk = m * a

(1 * 9.8 * sin45) - fk = 1 * 4

fk = 2.93 N

fk = μ * N

2.93 = μ * 6.93

μ = 0.422

Consider two copper wires of equal cross-sectional area. One wire has 3 times the length of the other. How do the resistivities of these two wires compare?

Answers

Explanation:

The relation between resistance and resistivity is given by :

R=\rho (l)/(A)

\rho is resistivity of material

l is length of wire

A is area of cross section of wire

Resistivity of a material is the hidden property. If one wire has 3 times the length of the other, then it doesn't affect its resistivity. Hence, the resistivity of two wires is

A 750-kg automobile is moving at 26.2 m/s at a height of 5.00 m above the bottom of a hill when it runs out of gasoline. The car coasts down the hill and then continues coasting up the other side until it comes to rest. Ignoring frictional forces and air resistance, what is the value of h, the highest position the car reaches above the bottom of the hill?

Answers

To solve this problem it is necessary to apply to the concepts related to energy conservation. For this purpose we will consider potential energy and kinetic energy as the energies linked to the body. The final kinetic energy is null since everything is converted into potential energy, therefore

Potential Energy can be defined as,

PE = mgh

Kinetic Energy can be defined as,

K= (1)/(2) mv^2

Now for Conservation of Energy,

KE_i+PE_i = PE_f

(1)/(2)mv_i^2+mgh_1 = mgh_2

(1)/(2) (750kg) (26.2m/s)^2 + (750)(9.8)(5) = (750)(9.8)h_2

h_2 = 40.0224m

Therefore the highets position the car reaches above the bottom of the hill is 40.02m

An electric field of 710,000 N/C points due west at a certain spot. What is the magnitude of the force that acts on a charge of -6.00 C at this spot? (14C - 10 6C) Give your answer in Si unit rounded to two decimal places

Answers

Answer:

4.26*10^6N

Explanation:

A charge within an electric field E experiences a force proportional to the field whose module is F = qE, whose direction is the same, if the charge is negative, it experiences a force in the opposite direction to the field and if the charge is positive, experience a force in the same direction of the field.

In our case we are interested in the magnitude of the force, therefore the sign of the charge has no relevance

\left | F \right |=\left |q  \right |  \left |E\right |\n\left | F \right |=6.00C*710000(N)/(C)=4.26*10^6N

A person pushing a stroller starts from rest, uniformly accelerating at a rate of 0.500 m/s2. What is the velocityof the stroller after it has traveled 6.32 m?

Answers

You're going to use the constant acceleration motion equation for velocity and displacement:

(V)final² = (V)initial²+2a(dx)

Given:

a=0.500m/s²

dx=6.32 m

(V)intial=0m

(V)final= UNKNOWN

(V)final= 2.51396m/s