) A flow is divided into two branches, with the pipe diameter and length the same for each branch. A 1/4-open gate valve is installed in line A, and a 1/3-closed ball valve is installed in line B. The head loss due to friction in each branch is negligible compared with the head loss across the valves. Find the ratio of the velocity in line A to that in line B (include elbow losses for threaded pipe fittings).

Answers

Answer 1
Answer:

Answer:

Va / Vb = 0.5934

Explanation:

First step is to determine total head losses at each pipe

at Pipe A

For 1/4 open gate valve head loss = 17 *Va^2 / 2g

elbow loss = 0.75 Va^2 / 2g

at Pipe B

For 1/3 closed ball valve head loss = 5.5 *Vb^2 / 2g

elbow loss = 0.75 * Vb^2 / 2g

Given that both pipes are parallel

17 *Va^2/2g +  0.75*Va^2 / 2g = 5.5 *Vb^2 / 2g  + 0.75 * Vb^2 / 2g

∴ Va / Vb = 0.5934


Related Questions

Why do we care about a material's ability to resist torsional deformation?(A) Because the angle of twist of a material is often used to predict its shear toughness(B) Because rotating shafts are used in engineering applications(C) We don't care - simply an academic exercise.(D) Because it can determine G and inform us of a materials ability to resist shear deformation
What is the difference between absolute and gage pressure?
A 4-pole, 3-phase induction motor operates from a supply whose frequency is 60 Hz. calculate: 1- the speed at which the magnetic field of the stator is rotating
A student takes 60 voltages readings across a resistor and finds a mean voltage of 2.501V with a sample standard deviation of 0.113V. Assuming that errors are due to random processes, how many of the readings are expected to be greater than 2.70V?
Required information NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. The gas-turbine cycle of a combined gas–steam power plant has a pressure ratio of 8. Air enters the compressor at 290 K and the turbine at 1400 K. The combustion gases leaving the gas turbine are used to heat the steam at 15 MPa to 450°C in a heat exchanger. The combustion gases leave the heat exchanger at 247°C. Steam expands in a high-pressure turbine to a pressure of 3 MPa and is reheated in the combustion chamber to 500°C before it expands in a low-pressure turbine to 10 kPa. The mass flow rate of steam is 17 kg/s. Assume isentropic efficiencies of 100 percent for the pump, 85 percent for the compressor, and 90 percent for the gas and steam turbines.Determine the rate of total heat input.

Steam enters a turbine from a 2 inch diameter pipe, at 600 psia, 930 F, with a velocity of 620 ft/s. It leaves the turbine at 12 psia with a quality of 1.0, through an outlet duct 1 ft in diameter. Calculate the turbine power output

Answers

Answer:

\dot W_(out) = 3374.289\,(BTU)/(s)

Explanation:

The model for the turbine is given by the First Law of Thermodynamics:

- \dot W_(out) + \dot m \cdot (h_(in) - h_(out)) = 0

The turbine power output is:

\dot W_(out) = \dot m\cdot (h_(in)-h_(out))

The volumetric flow is:

\dot V = (\pi)/(4) \cdot \left( (2)/(12)\,ft \right)^(2)\cdot (620\,(ft)/(s) )

\dot V \approx 13.526\,(ft^(3))/(s)

The specific volume of steam at inlet is:

State 1 (Superheated Steam)

\nu = 1.33490\,(ft^(3))/(lbm)

The mass flow is:

\dot m = (\dot V)/(\nu)

\dot m = (13.526\,(ft^(3))/(s) )/(1.33490\,(ft^(3))/(lbm) )

\dot m = 10.133\,(lbm)/(s)

Specific enthalpies at inlet and outlet are, respectively:

State 1 (Superheated Steam)

h = 1479.74\,(BTU)/(lbm)

State 2 (Saturated Vapor)

h = 1146.1\,(BTU)/(lbm)

The turbine power output is:

\dot W_(out) = (10.133\,(lbm)/(s) )\cdot (1479.1\,(BTU)/(lbm)-1146.1\,(BTU)/(lbm))

\dot W_(out) = 3374.289\,(BTU)/(s)

Which outcome most accurately portrays the future for the timber company in the following scenario?A timber company that cuts and sells its own wood has been in high demand for the past three years. The company has gone through many acres of forest in its area, but it is sure to plant tree seeds after it bulldozes a section.

The timber company will lose business soon because not many people will need to build houses and buildings anymore.
The timber company will run out of trees quickly because the seedlings will not have enough time to become full-grown timber.
The timber company will go out of business due to the rising number of buildings using cement and concrete rather than timber.
The timber company will continue to grow because of its good business practices, and it will become the number one timber company in the country.

Answers

Answer: The timber company will run out of trees quickly because the seedlings will not have enough time to become full-grown timber

Explanation: I got it right on Edge!!!! Hope this helps

The answer to the question mark the park in a

Answers

The correct answer is that being a

Calculate how large a mass would be necessary to obtain a mechanical noise limit of [Equation] = 1 nG, 1 µG, and 1 mG if the mechanical resonance frequency is [Equation] = 100 Hz. If the mass is to be made of cube of `silicon, what would its physical dimensions be?

Answers

Answer:

Mechanical resonance frequency is the frequency of a system to react sharply when the frequency of oscillation is equal to its resonant frequency (natural frequency).

The physical dimension of the silicon is 10kg

Explanation:

Using the formular, Force, F = 1/2π√k/m

At resonance, spring constant, k = mw² ( where w = 2πf), when spring constant, k = centripetal force ( F = mw²r).

Hence, F = 1/2π√mw²/m = f ( f = frequency)

∴ f = F = mg, taking g = 9.8 m/s²

100 Hz = 9.8 m/s² X m

m = 100/9.8 = 10.2kg

The safety risks are the same for technicians who work on hybrid electric vehicles (HEVs) or EVs as those who work on conventional gasoline vehicles.

Answers

The safety risks are the same for technicians who work on hybrid electric vehicles (HEVs) or EVs as those who work on conventional gasoline vehicles: False.

Safety risks can be defined as an assessment of the risks and occupational hazards associated with the use, operation or maintenance of an equipment or automobile vehicle that is capable of leading to the;

  • Harm of a worker (technician).
  • Injury of a worker (technician).
  • Illness of a worker (technician).
  • Death of a worker (technician).

Hybrid electric vehicles (HEVs) or EVs are typically designed and developed with parts or components that operates through the use of high voltageelectrical systems ranging from 100 Volts to 600 Volts. Also, these type of vehicles have an in-built HEV batteries which are typically encased in sealed shells so as to mitigate potential hazards to a technician.

On the other hand, conventional gasoline vehicles are typically designed and developed with parts or components that operates on hydrocarbon such as fuel and motor engine oil. Also, conventional gasoline vehicles do not require the use of high voltage electrical systems and as such poses less threat to technicians, which is in contrast with hybrid electric vehicles (HEVs) or EVs.

This ultimately implies that, the safety risks for technicians who work on hybrid electric vehicles (HEVs) or EVs are different from those who work on conventional gasoline vehicles due to high voltage electrical systems that are being used in the former.

In conclusion, technicians who work on hybrid electric vehicles (HEVs) or EVs are susceptible (vulnerable) to being electrocuted to death when safety risks are not properly adhered to unlike technicians working on conventional gasoline vehicles.

Find more information: brainly.com/question/2878752

Answer:

Batteries are safe when handled properly.

Explanation:

Just like the battery in your phone, the battery in some variant of an electric car is just as safe. If you puncture/smash just about any common kind of charged battery, it will combust. As long as you don't plan on doing anything extreme with the battery (or messing with high voltage) you should be fine.

In a home, air infiltrates from the outside through cracks around doors and windows. Consider a residence where the total length of cracks is 62 m and the total internal volume is 210 m3 . Due to the wind, 9.4 x 10-5 kg/s of air enters per meter of crack and exits up a chimney. Assume air temperature is the same inside and out and air density is constant at 1.186 kg/m3 . If windows and doors are not opened or closed, estimate the time required for one complete air change in the building.

Answers

Answer:

Time period  = 41654.08 s

Explanation:

Given data:

Internal volume is 210 m^3

Rate of air infiltration  9.4 * 10^(-5) kg/s

length of cracks 62 m

air density = 1.186 kg/m^3

Total rate of air infiltration = 9.4* 10^(-5) * 62 = 582.8* 10{-5} kg/s

total volume of air  infiltration= \frac{582.8* 10{-5}}{1.156} = 5.04* 10^(-3) m^3/s

Time period = (210)/(5.04* 10^(-3)) = 41654.08 s

Other Questions