A 120-volt fluorescent ballast has an input current of 0.34 ampere and an input power rating of 22 watts. The power factor of the ballast is ____.

Answers

Answer 1
Answer:

The power factor of the ballast is 0.54 which is the ratio of working power to apparent power.

What is the power factor?

The power factor is a measure of energy efficiency. It is typically expressed as a percentage, with a lower percentage indicating inefficient power usage.

The power factor (PF) is the ratio of working power (in kW) to apparent power (in kilovolt amperes) (kVA).

Given that a 120-volt fluorescent ballast has an input current of 0.34 ampere and an input power rating of 22 watts.

PF = (True power)/(Apparent power)

PF = W/VA

Here W = 22 watts, V = 120-volt, and A = 0.34 ampere

PF = 22 / (120 × 0.34)

PF = 22 / 40.8

PF = 0.5392

PF = 0.54

Thus, the power factor of the ballast is 0.54.

Learn more about the power factor here:

brainly.com/question/19567608

#SPJ2

Answer 2
Answer:

Answer:

PF= .54

Explanation:

Power Factor equals working/real power (W) over apparent power (VA). 1.0 PF is an efficient equipment. PF= 22/(120*.34)


Related Questions

A site is compacted in the field, and the dry unit weight of the compacted soil (in the field) is determined to be 18 kN/m3. Determine the relative compaction if the maximum dry unit weight was measured to be 17 kN/m3. Express your answer as a percentage (but do not write the percentage sign in the answer box).
16) Find the output of the following flowchartAddress100101102103104105Value12.381516hiAnswer:80​
Karen just checked her bank balance and the balance was 1111.11. She is kind of freaking out and saved the receipt, thinking that it must mean something. Karen is probably just suffering from
List the RTL (Register Transfer Language) sequence of micro-operations needed to execute the instruction STORE X from the MARIE instruction set architecture. Then write the corresponding signal sequence to perform these micro-operations and to reset the clock cycle counter. You may refer to the provided "MARIE Architecture and Instruction Set" file in the Front Matter folder.
Calculate the "exact" alkalinity of the water in Problem 3-2 if the pH is 9.43.Calculate the "approximate" alkalinity (in mg/L as CaCO3 ) of a water containing 120 mg/L of bicarbonate ion and 15 mg/L of carbonate ion.

1. The presentation of data is becoming more and more important in today's Internet. Some people argue that the TCP/IP protocol suite needs to add a new layer to take care of the presentation of data. If this new layer is added in the future, where should its position be in the suite?

Answers

Answer:

It is important to add presentation layer after the physical layer, so that the data along with it's headers can be translated, when the receiver machine is applying a set of different characters.

Data compression is also required to reduce the space that is occupied by data during transmission, now once the presentation is added to the physical layer, data from the physical layer can be compressed at the presentation layer and sent by improving the throughput.

Explanation:

Solution

The presentation of data involves the following as shown below:

Presentation of data comprises of the task like translating between receiver and sender devices so that machines with different capabilities sets can communicate with one another.

It involves encoding  and decoding of data to provide data security that is been transmitted by different machines.

Data sometimes needs to compressed for efficiency improvement  for transmission.

The physical layer of the TCP/IP protocol suite is responsible or refers to the transmission of physical data over a physical medium

It is good or important to add presentation layer after the physical layer, so that the data along with it's headers can be translated, when the receiver machine is applying a set of different characters.

Data encryption at this stage is good for security instead of encrypting the data at upper/higher layers.

Hence, it is advisable to add presentation layer after the physical layer in the TCP/IP suite.

Answer:

 

The layer ought to be embedded between Layer 2 and 3.

Explanation:

Applications often communicate with each other. This cannot be successful if they don't see data the same way. The Presentation Layer in the Open Systems Interconnection defines how data is presented and is often processed in the TCP/IP applications.

While the Presentation Layer does not exist as a different layer in the TCP/IP protocol order of arrangement, it is important to note that the Network Layer is also known referred to as the TCP/IP’s Network Layer.

Therefore, if the presentation of the data layer will be separated, it should be between layer 2 and 3.  

Cheers!

A insulated vessel s has two compartments separated by a membreane. On one side is 1kg of steam at 400 degC and 200 bar. The other side is evacuated . The membrane ruptures, filling the entire volume. The finial pressure is 100bar. Determine the final temperature of the steam and the volume of the vessel.

Answers

Answer:

See explaination

Explanation:

See attachment for the detailed step by step solution of the given problem.

One piece of evidence that supports the Theory of Plate Tectonics is the discovery of what in both South America and Africa? The ancient atmosphere in both places was identical. The rates of weathering of rock are similar. Fossil remains of the same land-dwelling animal. Plants on both continents have similar flowers.

Answers

Answer: Fossil remains of the same land-dwelling animal.

Explanation: Fossil remains which were found to belong to same land dwelling animals, in South America and Africa was used as evidence to help support the theory of Tectonics plates, what this theory simply means is that the whole continents of earth were once fused together until a tectonic plate caused it’s division. Since same remains were found in Africa and South America this shows that both continents were once fused together.

Answer:

Fossil remains of the same land-dwelling animal

Explanation:

Fossil remains tell us where the animals once lived and how by the movement of plate spearated their remaind that was burried thousands of years ago.

The specific volume of mercury is .00007 m^3/Kg. What is its density in lbm/ft^3?

Answers

Answer:

891.027 lbm/ft³

Explanation:

See it in the pic

Reduce the following lambda-calculus term to the normalform. Show all intermediate steps, with one beta reduction at a time. In the reduction, assume that you are supplied with extra rules thatallow you to reduce the multiplication of two natural numbers into thecorresponding result.(λf.λx.f(f x))(λy.y≠3) 2

Answers

Answer:

Decrease to typical from utilizing lambda-decrease:  

The given lambda - math terms is, (λf.λx.f(f(fx)))(λy.y×3)2

The of taking the terms is significant in lambda - math,  

For the term, (λy, y×3)2, we can substitute the incentive to the capacity.  

Therefore apply beta-decrease on “(λy, y×3)2,“ will return 2 × 3 = 6  

Presently the tem becomes, (λf λx f(f(fx)))6

The main term, (λf λx f(f(fx))) takes a capacity and a contention and substitute the contention in the capacity.  

Here it is given that it is conceivable to substitute, the subsequent increase in the outcome.  

In this way by applying next level beta - decrease, the term becomes f(f(f(6))), which is in ordinary structure.

Water exiting the condenser of a power plant at 45 Centers a cooling tower with a mas flow rate of 15,000 kg/s. A stream of cooled water is returned to the condenser at the same flowrate. Makeup water is added in a separate stream at 20 C. Atmosphericair enters the cooling tower at 30 C, with a wet bulb temperature of 20 C. The volumetric flow rate of moist air into the cooling tower is 8000 m3/s. Moist air exits the tower at 40C and 90% RH. Assume atmospheric pressure is at 101.3 kPa. Determine: a.T

Answers

Answer: hello your question is incomplete below is the missing part

question :Determine the temperature of the cooled water exiting the cooling tower

answer : T  = 43.477° C

Explanation:

Temp of water at exit = 45°C

mass flow rate of cooling tower = 15,000 kg/s

Temp of makeup water = 20°C

Assuming an atmospheric pressure of = 101.3 kPa

Determine temperature of the cooled water exiting the cooling tower

Water entering cooling tower at 45°C

Given that Latent heat of water at 45°C = 43.13 KJ/mol

Cp(wet air) = 1.005+ 1.884(y1)

where: y1 - Inlet mole ratio = (0.01257) / (1 - 0.01257) = 0.01273

Hence : Cp(wet air) = 29.145 +  (0.01273) (33.94) = 29.577 KJ/kmol°C

First step : calculate the value of Q

Q = m*Cp*(ΔT) + W(latent heat)

Q = 321.6968 (29.577) (40-30) +  43.13 (18.26089)

Q =  95935.8547 KJ/s

Given that mass rate of water = 15000 kg/s

Hence the temperature of the cooled water can be calculated using the equation below

Q = m*Cp*∆T

Cp(water) = 4.2 KJ/Kg°C

95935.8547 = (15000)*(4.2)*(45 - T)

( 45 - T ) = 95935.8547/ 63000.    ∴ T  = 43.477° C

Other Questions