What is 29.95 inHg in kPa?

Answers

Answer 1
Answer:

Answer:

101.42235 kPa

Explanation:

The unit inHg means "inches of mercury", Its a pressure unit commonly used  by the US aviators.

The conversion value to KPa (kilopascal) is

1 inHg= 3.386389 kPa

So now we only have to multiply:

29.95 inHg * 3.386389 kPa/in Hg =101.42235 kPa

Have a nice day and Good Luck!


Related Questions

Compute the electrical resistivity of a cylindrical silicon specimen 7.0 mm (0.28 in.) diameter and 57 mm (2.25 in.) in length in which a current of 0.25 A passes in an axial direction. A voltage of 24 V is measured across two probes that are separated by 45 mm (1.75 in.).
An environmental engineer is considering three methods for disposing of a nonhazardous chemical sludge: land application, fluidized-bed incineration, and private disposal contract. The estimates for each method are below. (a) Determine which has the least cost on the basis of an annual worth comparison at 10% per year. (b) Determine the equivalent present worth value of each alternative using its AW value
An interest buydown program offers to reduce interest rates by 4% from the base rate. Suppose the base rate for a loan of $8000 is 8% for 10 years. What is the monthly payment before and after the buydown? In this case, use monthly compounding, that is, the term is 120 payment periods, and the interest per month is 0.667% before and 0.333% after the buydown.
Link AB is to be made of a steel for which the ultimate normal stress is 65 ksi. Determine the cross-sectional area of AB for which the factor of safety will be 3.20. Assume that the link will be adequately reinforced around the pins at A and B.
If the total energy change of an system during a process is 15.5 kJ, its change in kinetic energy is -3.5 kJ, and its potential energy is unchanged, calculate its change in specificinternal energy if its mass is 5.4 kg. Report your answer in kJ/kg to one decimal place.

Yield and tensile strengths and modulus of elasticity . with increasing temperature. (increase/decrease/independent)

Answers

Answer:

Yield strength, tensile strength decreases with increasing temperature and modulus of elasticity decreases with increasing in temperature.

Explanation:

The modulus of elasticity of a material is theoretically a function of the shape of curve plotted between the potential energy stored in the material as it is loaded versus the inter atomic distance in the material. The temperature distrots the molecular structure of the metal and hence it has an effect on the modulus of elasticity of a material.

Mathematically we can write,

E(t)=E_o[1-a(T)/(T_m)]

where,

E(t) is the modulus of elasticity at any temperature 'T'

E_o is the modulus of elasticity at absolute zero.

T_(m) is the mean melting point of the material

Hence we can see that with increasing temperature modulus of elasticity decreases.

In the case of yield strength and the tensile strength as we know that heating causes softening of a material thus we can physically conclude that in general the strength of the material decreases at elevated temperatures.

A Coca Cola can with diameter 62 mm and wall thickness 300 um has an internal pressure of 100 kPa. Calculate the principal stresses at a point on the cylindrical surface of the can far from its ends.

Answers

Answer:

\sigma _1=10.33MPa

\sigma _2=5.16MPa

Explanation:

Given that

Diameter(d)=62 mm

Thickness(t)= 300 μm=0.3 mm

Internal pressure(P)=100 KPa

Actually there is no any shear stress so normal stress will become principle stress.This is the case of thin cylinder.The stress in thin cylinder are hoop stress and longitudinal stress .

The hoop stress

\sigma _h=(Pd)/(2t)

Longitudinal stress

\sigma _l=(Pd)/(4t)

Now by putting the values

\sigma _h=(Pd)/(2t)

\sigma _h=(100* 62)/(2* 0.3)

\sigma _h=10.33MPa

\sigma _l=5.16MPa

So the principle stress are

\sigma _1=10.33MPa

\sigma _2=5.16MPa

A rectangular channel with a width of 2 m is carrying 15 m3/s. What are the critical depth and the flow velocity

Answers

Answer:

The critical depth of the rectangular channel is approximately 1.790 meters.

The flow velocity in the rectangular channel is 4.190 meters per second.

Explanation:

From Open Channel Theory we know that critical depth of the rectangular channel (y_(c)), measured in meters, is calculated by using this equation:

y_(c) = \sqrt[3]{(\dot V^(2))/(g\cdot b^(2)) }(Eq. 1)

Where:

\dot V - Volume flow rate, measured in cubic meters per second.

g - Gravitational acceleration, measured in meters per square second.

b - Channel width, measured in meters.

If we know that \dot V = 15\,(m^(3))/(s), g = 9.807\,(m)/(s^(2)) and b = 2\,m, then the critical depth is:

y_(c) = \sqrt[3]{(\left(15\,(m^(3))/(s) \right)^(2))/(\left(9.807\,(m)/(s^(2)) \right)\cdot (2\,m)^(2)) }

y_(c) \approx 1.790\,m

The critical depth of the rectangular channel is approximately 1.790 meters.

Lastly, the flow velocity (v), measured in meters, is obtained from this formula:

v = (\dot V)/(b\cdot y_(c))(Eq. 2)

If we know that \dot V = 15\,(m^(3))/(s), b = 2\,m and y_(c) = 1.790\,m, then the flow velocity in the rectangular channel is:

v = (15\,(m^(2))/(s) )/((2\,m)\cdot (1.790\,m))

v = 4.190\,(m)/(s)

The flow velocity in the rectangular channel is 4.190 meters per second.

Shear modulus is analogous to what material property that is determined in tensile testing? (a)- Percent reduction of area (b) Yield strength (c)- Elastic modulus (d)- Poisson's ratio

Answers

Answer:

(c)- Elastic modulus

Explanation:

  We know that in tensile test we measure the properties of the material like yield strength,ultimate tensile strength ,Poisson ratio.

In tensile test

σ = ε E

Where σ is the stress

ε  is the strain.

E is the elastic modulus.

Now for shear tress

τ = Φ G

Where τ the shear stress

Φ  is the shear strain.

G  is the shear  modulus.

So we can say that Shear modulus is analogous to Elastic modulus.

The safety risks are the same for technicians who work on hybrid electric vehicles (HEVs) or EVs as those who work on conventional gasoline vehicles.

Answers

The safety risks are the same for technicians who work on hybrid electric vehicles (HEVs) or EVs as those who work on conventional gasoline vehicles: False.

Safety risks can be defined as an assessment of the risks and occupational hazards associated with the use, operation or maintenance of an equipment or automobile vehicle that is capable of leading to the;

  • Harm of a worker (technician).
  • Injury of a worker (technician).
  • Illness of a worker (technician).
  • Death of a worker (technician).

Hybrid electric vehicles (HEVs) or EVs are typically designed and developed with parts or components that operates through the use of high voltageelectrical systems ranging from 100 Volts to 600 Volts. Also, these type of vehicles have an in-built HEV batteries which are typically encased in sealed shells so as to mitigate potential hazards to a technician.

On the other hand, conventional gasoline vehicles are typically designed and developed with parts or components that operates on hydrocarbon such as fuel and motor engine oil. Also, conventional gasoline vehicles do not require the use of high voltage electrical systems and as such poses less threat to technicians, which is in contrast with hybrid electric vehicles (HEVs) or EVs.

This ultimately implies that, the safety risks for technicians who work on hybrid electric vehicles (HEVs) or EVs are different from those who work on conventional gasoline vehicles due to high voltage electrical systems that are being used in the former.

In conclusion, technicians who work on hybrid electric vehicles (HEVs) or EVs are susceptible (vulnerable) to being electrocuted to death when safety risks are not properly adhered to unlike technicians working on conventional gasoline vehicles.

Find more information: brainly.com/question/2878752

Answer:

Batteries are safe when handled properly.

Explanation:

Just like the battery in your phone, the battery in some variant of an electric car is just as safe. If you puncture/smash just about any common kind of charged battery, it will combust. As long as you don't plan on doing anything extreme with the battery (or messing with high voltage) you should be fine.

Analyze that, “Convection is equal to the Conduction plus fluid flow.”

Answers

Answer:

Conduction is a heat transfer mechanism. It is the dominant heat transfer mechanism in solids and it involves the vibration of the molecules of the solid. As heat is transfered to one end of the solid, the molecules at that end start to vibrate and in this process, collides with the adjacent molecules setting it to vibrate too. Also free electrons around the solid atoms (especially in metals) contribute to this heat flow. The continuous vibration is transfered from molecule to molecule gradually along the solid until the average kinetic energy (a measure of temperature) of the molecules along the metal has increased.

Convection is the dominant heat transfer mechanism in fluids, it involves the complete movement of the fluid molecule from a hot spot in the fluid to a cooler spot in the fluid. For convectional movement to occur, the molecules must first come in contact with the heat and absorb the heat first by conduction. As the heat increases, the fluid molecules break from just vibrating about a fixed point to moving completely to a cooler spot due to buoyant forces (due to the difference in density of hot and cooler fluid molecules). This clearly point out the fact that convectional heat transfer is first conduction, and then complete later flow of the fluid molecules.

Other Questions