How much computer memory (in bytes) in minimum would be required to store 10 seconds of a sensor signal sampled by a 12-bit A/D converter operating at a sampling rate of 5 kHz?

Answers

Answer 1
Answer:

Answer:

73.24 K byte

Explanation:

Assuming that

N = total number of samples

N = 10 * 5kHz

N = 50*10^3

Also, the total number of bits, T

T = 12 * N

T = 12 * 50*10^3

T = 600 * 10^3

And then, finally, the total number of byte,

B = 600*10^(3/8)

B = 75*10^3 byte

75*10^3 byte = 75*10^3/1024 kilo byte

And on converting to decimal, we will have

= 73.24 K byte

Therefore, the memory required = 73.24 K byte


Related Questions

A 120-volt fluorescent ballast has an input current of 0.34 ampere and an input power rating of 22 watts. The power factor of the ballast is ____.
In a TDM communication example, 15 voice signals are badlimited to 5kHz and transmitted simultaneously using PAM. What is a preliminary estimate for the required system bandwidth?(a) 10 kHz(b) 75 kHz(c) 80 kHz(d) 160 kHz(e) None of the above.
5. Switch a in the circuit has been open for a long time and switch b has been closed for a long time. Switch a is closed at t = 0. After remaining closed for 1s, switches a and b are opened simultaneously and remain open indefinitely. Determine the expression for the inductor current i that is valid when (a) 0 ≤ t ≤ 1s and (b) t ≥ 1s
(25) Consider the mechanical system below. Obtain the steady-state outputs x_1 (t) and x_2 (t) when the input p(t) is the sinusodal force given by p(t) = P sin ωt. All positions are measured from equilibrium. Use m_1=1.5 kg, m_2=2 kg, k=7 N/m, b=3.2 (N∙s)/m, P=15 N, =12 rad/sec. Hint: first create the state space model for the system. Then use SS2TF to make the two transfer functions and then the two Bode plots (include with submission). Use the plots to find the steady-state equations.
. In one stroke of a reciprocating compressor, helium is isothermally and reversibly compressed in a piston + cylinder from 298 K and 20 bars to 200 bars. Compute the heat removal and work required.

"Given a nodal delay of 84.1ms when there is no traffic on the network (i.e. usage = 0%), what is the effective delay when network usage = 39.3% ? (Give answer is miliseconds, rounded to one decimal place, without units. So for an answer of 0.10423 seconds you would enter "104.2" without the qu"

Answers

Answer:

Explanation:

effective delay = delay when no traffic x (100)/(100- network\r usage)

effective delay = 84.1 * (100)/(100-39.3)=138.55024711697ms

Shear modulus is analogous to what material property that is determined in tensile testing? (a)- Percent reduction of area (b) Yield strength (c)- Elastic modulus (d)- Poisson's ratio

Answers

Answer:

(c)- Elastic modulus

Explanation:

  We know that in tensile test we measure the properties of the material like yield strength,ultimate tensile strength ,Poisson ratio.

In tensile test

σ = ε E

Where σ is the stress

ε  is the strain.

E is the elastic modulus.

Now for shear tress

τ = Φ G

Where τ the shear stress

Φ  is the shear strain.

G  is the shear  modulus.

So we can say that Shear modulus is analogous to Elastic modulus.

A power plant burns natural gas to supply heat to a heat engine which rejects heat to the adjacent river. The power plant produces 800 MW of electrical power and has a thermal efficiency of 38%. Determine the heat transfer rates from the natural gas and to the river, in MW.

Answers

A. The heat transfer rate from natural gas is 2105.26 MW

B. The heat transfer rate to river is 1305.26 MW

Efficiency formula

Efficiency = (power output / power input) × 100

A. How to determine the heat transfer from natural gas

  • Efficiency = 38%
  • Power output = 800 MW
  • Power input =?

Power input = Power input / efficiency

Power input = 800 / 38%

Power input = 800 / 0.38

Power input = 2105.26 MW

Thus, the heat transfer from natural gas is 2105.26 MW

B. How to determine the heat transfer to the river

  • Total heat = 2105.26 MW
  • Heat used by plant = 800 MW
  • Heat to the river =?

Heat to the river = 2105.26 – 800

Heat to the river = 1305.26 MW

Learn more about efficiency:

brainly.com/question/2009210

Answer:

heat transfer from natural gas is 2105.26 MW

heat transfer to river is 1305.26 MW

Explanation:

given data

power output Wn = 800 MW

efficiency = 38%

solution

we know that efficiency is express as

\eta = (Wn)/(Qin)    ......................1

put here value we get

38% = (800)/(Qin)  

Qin  = 2105.26 MW

so heat supply is 2105.26

so we can say

Wn = Qin - Qout

800 = 2105.26 - Qout

Qout = 2105.26 - 800

Qout = 1305.26 MW

so heat transfer from natural gas is 2105.26 MW

and heat transfer to river is 1305.26 MW

1. An automobile travels along a straight road at 15.65 m/s through a 11.18 m/sspeed zone. A police car observed the automobile. At the instant that the two
vehicles are abreast of each other, the police car starts to pursue the automobile at
a constant acceleration of 1.96 m/s². The motorist noticed the police car in his rear
view mirror 12 s after the police car started the pursuit and applied his brakes and decelerates at 3.05 m/s². (Hint: The police will not go against the law.)
a) Find the total time required for the police car to overtake the automobile.
b) Find the total distance travelled by the police car while overtaking the
automobile.
c) Find the speed of the police car at the time it overtakes the automobile.
d) Find the speed of the automobile at the time it was overtaken by the police car.

Answers

Answer:

a.) Time = 17.13 seconds

b.) 31.88 m

c.) V = 11.18 m/s

d.) V = 7.1 m/s

Explanation:

The initial velocity U of the automobile is 15.65 m/s.

 At the instant that the two vehicles are abreast of each other, the police car starts to pursue the automobile with initial velocity U = 0 at a constant acceleration of 1.96 m/s². Because the police is starting from rest.

For the automobile, let us use first equation of motion

V = U - at.

Acceleration a is negative since it is decelerating with a = 3.05 m/s² . And

V = 0.

Substitute U and a into the formula

0 = 15.65 - 3.05t

15.65 = 3.05t

t = 15.65/3.05

t = 5.13 seconds

But the motorist noticed the police car in his rear view mirror 12 s after the police car started the pursuit and applied his brakes and decelerates at 3.05 m/s².

The total time required for the police car to overtake the automobile will be

12 + 5.13 = 17.13 seconds.

b.) Using the third equation of motion formula for the police car at V = 11.18 m/s and a = 1.96 m/s²

V^2 = U^2 + 2aS

Where S = distance travelled.

Substitute V and a into the formula

11.18^2 = 0 + 2 × 1.96 ×S

124.99 = 3.92S

S = 124.99/3.92

S = 31.88 m

c.) The speed of the police car at the time it overtakes the automobile will be in line with the speed zone which is 11.18 m/s

d.) That will be the final velocity V of the automobile car.

We will use third equation of motion to solve that.

V^2 = U^2 + 2as

V^2 = 15.65^2 - 2 × 3.05 × 31.88

V^2 = 244.9225 - 194.468

V = sqrt( 50.4545)

V = 7.1 m/s

B. Suppose R1 is a fuse which burns out due to a sudden surge of current, thus, it essentially becomes an open switch. How do the currents change after this?

Answers

Answer:

The currents becomes 0

Explanation:

when the fuse burns out due to a sudden surge of current and becomes an open switch (with a resistance of Infinity ∞) this automatically reduces the currents through it to zero

A technician has been dispatched to assist a sales person who cannot get his laptop to display through a projector. The technician verified the video is displaying properly on the laptop's built-in screen. Which of the following is the next step the technician should take?

Answers

Answer:verify proper cable is hooked between laptop and projector. HDMI ports or 15 pin video output to input.

And laptop is selected to output to respective video output.

Explanation:

Other Questions