Musk is working on developing reusable rockets in order to further us as a space-faring civilization. Given his life dedication to energy production, conservation, and efficiency, can you think of any other reasons that Musk may want to expand our ability to exist on other planets and in space?

Answers

Answer 1
Answer:

Answer:

exploration

Explanation:

Other than the scientific reasons listed in the question, one of the main reasons why people all over the world are pursuing this endeavor is exploration. As human beings, we love to imagine new worlds and life-forms that we have never seen before. This fuels our need for exploration. Scientists throughout generations have dedicated their entire lives to learning and creating newer and better technology in order for humans to take that next step in exploring and learning the secrets of the universe.


Related Questions

Please define the specific heat of material?
What are the general principles of DFA? What are the steps to minimize the number of parts for an assembly?
B. Suppose R1 is a fuse which burns out due to a sudden surge of current, thus, it essentially becomes an open switch. How do the currents change after this?
A cylindrical specimen of a hypothetical metal alloy is stressed in compression. If its original and final diameters are 20.000 and 20.025 mm, respectively, and its final length is 74.96 mm, compute its original length if the deformation is totally elastic. The elastic and shear moduli for this alloy are 105 GPa and 39.7 GPa, respectively.
What are the important factors needed to be considered while selecting a brake or clutch?

Analyze that, “Convection is equal to the Conduction plus fluid flow.”

Answers

Answer:

Conduction is a heat transfer mechanism. It is the dominant heat transfer mechanism in solids and it involves the vibration of the molecules of the solid. As heat is transfered to one end of the solid, the molecules at that end start to vibrate and in this process, collides with the adjacent molecules setting it to vibrate too. Also free electrons around the solid atoms (especially in metals) contribute to this heat flow. The continuous vibration is transfered from molecule to molecule gradually along the solid until the average kinetic energy (a measure of temperature) of the molecules along the metal has increased.

Convection is the dominant heat transfer mechanism in fluids, it involves the complete movement of the fluid molecule from a hot spot in the fluid to a cooler spot in the fluid. For convectional movement to occur, the molecules must first come in contact with the heat and absorb the heat first by conduction. As the heat increases, the fluid molecules break from just vibrating about a fixed point to moving completely to a cooler spot due to buoyant forces (due to the difference in density of hot and cooler fluid molecules). This clearly point out the fact that convectional heat transfer is first conduction, and then complete later flow of the fluid molecules.

Air expands adiabatically through a nozzle from a negligible initial velocity to a final velocity of 300 m/s, what is the temperature drop of the air, if air is assumed to be an ideal gas for which CP = (7/2)R?

Answers

The temperature drop of air if air is assumed to be an ideal gas for which C_p = ⁷/₂R is; Δt = 1546 K

We are given;

Final velocity; v₂ = 300 m/s

C_p = ⁷/₂R

At constant pressure, the change in enthalpy is;

Δh = C_p × Δt

Now, from first law of thermodynamics;

h₂ + (v₂²/2) = h₁ + (v₁²/2)

We are told initial velocity is negligible and as such v₁ = 0 m/s

Thus;

h₂ + (v₂²/2) = h₁ + 0

(h₁ - h₂) =  (v₂²/2)

Thus; Δh = v₂²/2

Finally;

C_p × Δt = v₂²/2

Δt = v₂²/2/(C_p)

Δt =  (300²/2)/(⁷/₂R)

where R is ideal gas constant = 8.314 Kj/kg.mol

Thus;

Δt = (300²/2)/(⁷/₂ × 8.314)

Δt = 1546 K

Read more at; brainly.com/question/24188841

Answer:

ΔH+U²/2=0

and

ΔH=C{p×ΔT

∴to get the temperature drop of air, you make ΔT subject of the formula

ΔT=-U²/2Cp

    =-300²/2×(7)/(2)×8.314

∴ΔT=-1546K

Explanation:

A household refrigerator that has a power input of 450 W and a COP of 1.5 is to cool 5 large watermelons, 10 kg each, to 8 C. If the watermelons are initially at 28 C, determine how long it will take for the refrigerator to cool them.

Answers

Answer:

\Delta t = 5866.667\,s\,(97.778\,m)

Explanation:

The specific heat for watermelon above freezing point is 3.96\,(kJ)/(kg\cdot K). The heat liberated by the watermelon to cool down to 8°C is:

Q_(cooling) = (5)\cdot (10\,kg)\cdot (3.96\,(kJ)/(kg\cdot K) )\cdot (20\,K)

Q_(cooling) = 3960\,kJ

The heat absorbed by the household refrigerator is:

\dot Q_(L) = COP\cdot \dot W_(e)

\dot Q_(L) = 1.5\cdot (0.45\,kW)

\dot Q_(L) = 0.675\,kW

Time needed to cool the watermelons is:

\Delta t = (Q_(cooling))/(\dot Q_(L))

\Delta t = (3960\,kJ)/(0.675\,kW)

\Delta t = 5866.667\,s\,(97.778\,m)

 

What is the difference between absolute and gage pressure?

Answers

Explanation:

Step1

Absolute pressure is the pressure above zero level of the pressure. Absolute pressure is considering atmospheric pressure in it. Absolute pressure is always positive. There is no negative absolute pressure.

The expression for absolute pressure is given as follows:

P_(ab)=P_(g)+P_(atm)

Here, P_(ab) is absolute pressure, P_(g) is gauge pressure andP_(atm) is atmospheric pressure.

Step2

Gauge pressure is the pressure that measure above atmospheric pressure. It is not considering atmospheric pressure. It can be negative called vacuum or negative gauge pressure. Gauge pressure used to simplify the pressure equation for fluid analysis.  

Q1. Basic calculation of the First law (2’) (a) Suppose that 150 kJ of work are used to compress a spring, and that 25 kJ of heat are given off by the spring during this compression. What is the change in internal energy of the spring during the process? (b) Suppose that 100 kJ of work is done by a motor, but it also gives off 10 kJ of heat while carrying out this work. What is the change in internal energy of the motor during the process?

Answers

Answer:

(a) ΔU = 125 kJ

(b) ΔU = -110 kJ

Explanation:

(a) Suppose that 150 kJ of work are used to compress a spring, and that 25 kJ of heat are given off by the spring during this compression. What is the change in internal energy of the spring during the process?

The work is done to the system so w = 150 kJ.

The heat is released by the system so q = -25 kJ.

The change in internal energy (ΔU) is:

ΔU = q + w

ΔU = -25 kJ + 150 kJ = 125 kJ

(b) Suppose that 100 kJ of work is done by a motor, but it also gives off 10 kJ of heat while carrying out this work. What is the change in internal energy of the motor during the process?

The work is done by the system so w = -100 kJ.

The heat is released by the system so q = -10 kJ.

The change in internal energy (ΔU) is:

ΔU = q + w

ΔU = -10 kJ - 100 kJ = -110 kJ

___________ are used in an automotive shop and can be harmful to the environment if not disposed of properly.Oil filters
Fluorescent lamps
Mercury-containing lamps
All of the above

Answers

Answer: D all above

Explanation:

Jus done it

Other Questions