There are three homes being built, each with an identical deck on the back. Each deck is comprised of two separate areas. One area is 112.5 square feet, while the other is136,4 square feet. What is the total square footage of the decks for all three homos? Your answer should be to the nearest tonth of a square

Answers

Answer 1
Answer:

9514 1404 393

Answer:

  746.7 ft²

Explanation:

You can add them up, or you can take advantage of multiplication to make the repeated addition simpler.

  (112.5 ft² +136.4 ft²) +(112.5 ft² +136.4 ft²) +(112.5 ft² +136.4 ft²)

  = (3)((112.5 ft² +136.4 ft²) = 3(248.9 ft²) = 746.7 ft²

The total area of the decks on the 3 homes is 746.7 ft².


Related Questions

8. 15 A manual arc welding cell uses a welder and a fitter. The cell operates 2,000 hriyr. The welder is paid $30/hr and the fitter is paid $25/hr. Both rates include applicable overheads. The cycle time to complete one welded assembly is 15. 4 min. Of this time, the arc-on time is 25%, and the fitter's participation in the cycle is 30% of the cycle time. A robotic arc welding cell is being considered to replace this manual cell. The new cell would have one robot, one fitter, and two workstations, so that while the robot is working at the first sta tion, the fitter is unloading the other station and loading it with new components. The fitter's rate would remain at $25/hr. For the new cell, the production rate would be eight welded assemblies per hour. The arc-on time would increase to almost 52%, and the fitter's participation in the cycle would be about 62%. The installed cost of the robot and worksta tions is $158,000. Power and other utilities to operate the robot and arc welding equipment will be $3. 80/hr, and annual maintenance costs are $3,500. Given a 3-year service life, 15% rate of return, and no salvage value, (a) determine the annual quantity of welded assem blies that would have to be produced to reach the break-even point for the two methods. (b) What is the annual quantity of welded assemblies produced by the two methods work. Ing 2,000 hryr?​
Q1. A truck traveling at 40 mph is approaching a stop sign. At time ????0 and at a distance of 80ft, the truck begins to slow down by decelerating rate of 12 ft/sec2 . Will the truck be able to stop in time?
An automobile engine consumes fuel at a rate of 27.4 L/h and delivers 55 kW of power to the wheels. If the fuel has a heating value of 44,000 kJ/kg and a density of 0.73 g/cm3, deter- mine the efficiency of this engine in percentage(
web application 3: where's the beef? provide a screenshot confirming that you successfully completed this exploit: [place screenshot here] write two or three sentences outlining mitigation strategies for this vulnerability: [enter answer here]
Air is contained in a cylinder device fitted with a piston-cylinder. The piston initially rests on a set of stops, and a pressure of 300 kPa is required to move the piston. Initially, the air is at 100 kPa and 27°C and occupies a volume of 0.4 m^3. A) Determine the amount of heat transferred to the air, in kJ, while increasing the temperature to 1200 K. Assume air has constant specific heats evaluated at 300 K.

An activated sludge plant is being designed to handle a feed rate of 0.438 m3 /sec. The influent BOD concentration is 150 mg/L and the cell concentration (MLVSS) is 2,200 mg/L. If you wish to operate the plant with a food-to-microorganism ratio of 0.20 day-1 , what volume of aeration tank should you use? Please give your answer in m3 .

Answers

Answer:

Volume of aeration tank = 1.29 x 10^4 m³

Explanation:

Food/Micro- organism Ratio = 0.2/day

Feed Rate (Q) = 0.438 m³/s

Influent BOD = 150 mg/L

MLVSS = 2200 mg/L

The above mentioned parameters are related by the equation

F/M = QS₀/VX

where S₀ is the influent BOD and X is the cell concentration, with V being the Volume of the tank. Re- arranging the above equation for V and putting the values in, we get

V = 0.4380 x 150/0.2 x 2200

V = 0.1493 (m³/s) x day

V = 0.1493 x 24 x 60 x 60

V = 1.29 x 10^4 m³

Automobiles must be able to sustain a frontal impact. Specifically, the design must allow low speed impacts with little damage, while allowing the vehicle front end structure to deform and absorb impact energy at higher speeds. Consider a frontal impact test of a vehicle with a mass of 1000 kg. a. For a low speed test (v = 2.5 m/s), compute the energy in the vehicle just prior to impact. If the bumper is a pure elastic element, what is the effective design stiffness required to limit the bumper maximum deflection during impact to 4 cm? b. At a higher speed impact of v = 25 m/s, considerable deformation occurs. To absorb the energy, the front end of a vehicle is designed to deform while providing a nearly constant force. For this condition, what is the amount of energy that must be absorbed by the deformation [neglecting the energy stored in the elastic deformation in (a)? If it is desired to limit the deformation to 10 cm, what level of resistance force is required? What is the deacceleration of the vehicle in this condition?

Answers

Answer:

Explanation:

The concept of Hooke's law was applied as it relates to deformation.

The detailed steps and appropriate substitution is as shown in the attached file.

. In one stroke of a reciprocating compressor, helium is isothermally and reversibly compressed in a piston + cylinder from 298 K and 20 bars to 200 bars. Compute the heat removal and work required.

Answers

Answer:

5.7058kj/mole

Explanation:

Please see attachment for step by step guide

An inventor claims that he wants to build a dam to produce hydroelectric power. He correctly realizes that civilization uses a lot more electricity during the day than at night, so he thinks he has stumbled upon a great untapped energy supply. His plan is to install pumps at the bottom of the dam so that he can pump some of the water that flows out from the generators back up into the reservoir using the excess electricity generated at night. He reasons that if he did that, the water would just flow right back down through the generators the next day producing power for free. What is wrong with his plan?

Answers

Answer:

The problem is that the pumps would consume more energy than the generators would produce.

Explanation:

Water has a potential energy associated with the height it is at. The higher it is, the higher the potential energy. When water flows down into the turbines that energy is converted to kinetic energy and then into electricity.

A pump uses electricity to add energy to the water to send it to a higher potential energy state.

Ideally no net energy woul be hgenerate or lost, because the generators would release the potential energy and pumps would store it again in the water. However the systems are not ideal, everything has an efficiency and losses. The losses would accumulate and the generator would be generating less energy than the pumps consume, so that system wastes energy.

What should be done is closing the floodgates to keep the water up in the dam at night producing only the power that is needed and releasing more water during the day.

Q1. Basic calculation of the First law (2’) (a) Suppose that 150 kJ of work are used to compress a spring, and that 25 kJ of heat are given off by the spring during this compression. What is the change in internal energy of the spring during the process? (b) Suppose that 100 kJ of work is done by a motor, but it also gives off 10 kJ of heat while carrying out this work. What is the change in internal energy of the motor during the process?

Answers

Answer:

(a) ΔU = 125 kJ

(b) ΔU = -110 kJ

Explanation:

(a) Suppose that 150 kJ of work are used to compress a spring, and that 25 kJ of heat are given off by the spring during this compression. What is the change in internal energy of the spring during the process?

The work is done to the system so w = 150 kJ.

The heat is released by the system so q = -25 kJ.

The change in internal energy (ΔU) is:

ΔU = q + w

ΔU = -25 kJ + 150 kJ = 125 kJ

(b) Suppose that 100 kJ of work is done by a motor, but it also gives off 10 kJ of heat while carrying out this work. What is the change in internal energy of the motor during the process?

The work is done by the system so w = -100 kJ.

The heat is released by the system so q = -10 kJ.

The change in internal energy (ΔU) is:

ΔU = q + w

ΔU = -10 kJ - 100 kJ = -110 kJ

Imagine you have been asked to find the following object pictured on the left in the accompanying array on the right.RED AND WHITE SQUARES ALL LOOK SIMILAR
What type of search do you think this would be?

Answers

This type of search would be a linear search. A linear search involves looking at each item in the array one by one until the desired item is found.

In this case, you would look at each square in the array until you find the one that matches the object pictured on the left.  This is a common search method for small arrays or when the array is unsorted.

The algorithm continues until the target element is found, or until it reaches the end of the array and fails to find the target element. Linear searches are useful in scenarios where the array is small and unsorted, as the algorithm does not need to compare every element in the array to find the target element.

Learn more about linear search:

brainly.com/question/30026271

#SPJ11