write an interface downloadable that has a method "geturl" that returns the url of a downloadable object

Answers

Answer 1
Answer:

Answer:

I want to believe the program is to be written in java and i hope your question is complete. The code is in the explanation section below

Explanation:

import java.util.Date;

public interface Downloadable {

  //abstract methods

  public String getUrl();

  public Date getLastDownloadDate();

 

}


Related Questions

8. 15 A manual arc welding cell uses a welder and a fitter. The cell operates 2,000 hriyr. The welder is paid $30/hr and the fitter is paid $25/hr. Both rates include applicable overheads. The cycle time to complete one welded assembly is 15. 4 min. Of this time, the arc-on time is 25%, and the fitter's participation in the cycle is 30% of the cycle time. A robotic arc welding cell is being considered to replace this manual cell. The new cell would have one robot, one fitter, and two workstations, so that while the robot is working at the first sta tion, the fitter is unloading the other station and loading it with new components. The fitter's rate would remain at $25/hr. For the new cell, the production rate would be eight welded assemblies per hour. The arc-on time would increase to almost 52%, and the fitter's participation in the cycle would be about 62%. The installed cost of the robot and worksta tions is $158,000. Power and other utilities to operate the robot and arc welding equipment will be $3. 80/hr, and annual maintenance costs are $3,500. Given a 3-year service life, 15% rate of return, and no salvage value, (a) determine the annual quantity of welded assem blies that would have to be produced to reach the break-even point for the two methods. (b) What is the annual quantity of welded assemblies produced by the two methods work. Ing 2,000 hryr?​
Calculate the angle of banking on a bend of 100m radius so that vehicles can travel round the bend at 50km/hr without side thrust on the tyres.
Make a python code.Write a function named max that accepts two integer values as arguments and returns the value that is the greater of the two. For example, if 7 and 12 are passed as arguments to the function, the function should return 12. Use the function in a program that prompts the user to enter two integer values. The program should display the value that is the greater of the two. Write the program as a loop that continues to prompt for two numbers, outputs the maximum, and then goes back and prompts againHere’s an example of program useInput the first number: 10Input the second number: 5The maximum value is 10Run again? yesInput the first number: -10Input the second number: -5The maximum value is -5Run again? noFunction max():Obtain two numbers as input parameters: max(num1, num2):if num1 > num2 max_val = num1, else max_val = num2return max_valMain Program:Initialize loop control variable (continue = ‘y’)While continue == ‘y’Prompt for first numberPrompt for second numberCall function "max," sending it the values of the two numbers, capture result in an assignment statement:max_value = max (n1, n2)Display the maximum value returned by the functionprint(‘Max =’, max_val)Ask user for if she/he wants to continue (continue = input(‘Go again? y if yes’)
The hot water needs of an office are met by heating tab water by a heat pump from 16 C to 50 C at an average rate of 0.2 kg/min. If the COP of this heat pump is 2.8, the required power input is: (a) 1.33 kW (d) 10.2 kW (b) 0.17 kW (c) 0.041 kW
What is the average distance in microns an electron can travel with a diffusion coefficient of 25 cm^2/s if the electron lifetime is 7.7 microseconds. Three significant digits and fixed point notation.

Convert the angles of a triangle to radians.Part A31∘43′53′′, 90∘32′11′′, 57∘43′56′′Express your answers, separated by commas, to six significant figures.nothingrad, rad, radRequest AnswerPart B94∘22′19′′, 40∘54′53′′, 44∘42′48′′Express your answers, separated by commas, to six significant figures.

Answers

Answer:

Explanation:

To convert to radians

A31∘43′53′′, 90∘32′11′′, 57∘43′56′′

using DMS approach ; 1degree = 60minutes = 3600 seconds

1° = 60' = 3600"

And degree to radian = multiply by π/180

A) 31∘43′53′′ = 31degree + 43minutes + 53 seconds

= 31 degree + 43minutes + 53/60

= 31 degree + 43.88minutes

= 31 degree + 43.88/60 = 31.73 degree x π/180 = 0.5534radians

FOR 90∘32′11′′ = 90 degree + 32minutes + 11seconds

= 90degree + 32minutes + 11/60

= 90 degree + 32.183minutes

= 90 degree + 32.183/60 = 90.54degree x π/180

= 1.580radians

FOR 57∘43′56′′ = 57degree + 43minutes+ 56seconds

= 57degree + 43minutes + 56/60

= 57 degree + 43.93minutes

= 57degree + 43.93/60 = 57.73degree X π/180  

= 1.00radians

PART B

FOR 94∘22′19′′ = 94degree + 22minutes + 19seconds

= 94degree + 22minutes + 19/60

= 94degree + 22.32minutes

= 94degree + 22.32/60

= 94.37degree X π/180  = 1.65radians

FOR 40∘54′53′′ = 40degree + 54minutes + 53seconds

= 40 degree + 54minutes + 53/60

= 40 degree + 54.88minutes = 40 degree + 54.88/60

= 40.91degree X π/180  = 0.714radians

FOR 44∘42′48′′ = 44degree + 42minutes + 48seconds

= 44degree + 42.8minutes

= 44.71degree X π/180 = 0.780radians

Answer:

A.

0.176270π rad, 0.502980π rad, 0.320735π rad

B.

0.524289π rad, 0.227304π rad, 0.248407π rad

Explanation:

We know that,

1° = 60' 180° = π

1 ' = 1°/60 1° = π/180

A.

a. 31°43'53''

Step 1

53'' = 53 * 1/60

= 53'/60

Step 2

43'53''

= 43'+53'/60

= (2580+43)/60

= 2623'/60

-------- Convert to degrees

= 2623/60 * 1/60

= 2623/3600

Step 3

31°43'53''

= 31+ 2623/3600

= (111600 + 2623)/3600

= 114223°/3600

Now, we convert to radians

= 114223/3600 * π/180°

= 0.176270π rad

b.

90°32'11''

Step 1.

11' = 11 * 1/60

= 11/60

Step 2

32'11'

= 32 + 11/60

= 1931/60

-------- Convert to degrees

= 1931/60 * 1/60

= 1931/3600

Step 3

90°31'11''

= 90 + 1931/3600

= 325931°/3600

Now we convert to radians

= 325931°/3600 * π/180°

= 0.502980π rad

c.

57°43'56''

Step 1

56' = 56 * 1/60

= 56/60

= 14/15

Step 2

43'56''

= 43 + 14/15

= 659/15

Now we convert to degrees

= 659/15 * 1/60

= 659°/900

Step 3

57°43'56''

= 57 + 659/900

= 51959/900

Now we convert to radians

= 51959°/900 * π/180°

= 0.320735π rad

B.

a.

94∘22′19′′

Step 1

19'' = 19/60

Step 2

22'19''

= 22 + 19/60

= 1339/60

Now we convert to degrees

= 1339/60 * 1/60

= 1339°/3600

Step 3

94°22'19"

= 94 + 1339/3600

= 339739°/3600

Now we convert to radians

= 339739°/3600 * π/180

= 0.524289π rad

b.

40∘54′53′′

Step 1

53" = 53/60

Step 2

54'53"

= 54'+ 53/60

= 3293/60

Now we convert to degrees

= 3293/60 * 1/60

= 3293/3600

Step 3

40°54'53"

= 40 + 3293/3600

= 147293/3600

Now we convert to radians

= 147293/3600 * π/180

= 0.227304π rad

c.

44∘42′48′

Step 1

48' = 48/69

= 4/5

Step 2

42'48"

= 42 + 4/5

=214/5

Nowz we convert to degrees

= 214/5 * 1/60

= 107/150

Step 3

44°42'48"

= 44 + 107/150

= 6707/150

Now we convert to radians

= 6707/150 * π/180

= 0.248407π rad

The barrel of a bicycle tire pump becomes quite warm during use. Explain the mechanisms responsible for the temperature increase.

Answers

Answer:

The air heats up when being compressed and transefers heat to the barrel.

Explanation:

When a gas is compressed it raises in temperature. Assuming that the compression happens fast and is done before a significant amount of heat can be transferred to the barrel, we could say it is an adiabatic compression. This isn't exactly true, it is an approximation.

In an adiabatic transformation:

P^(1-k) * T^k = constant

For air k = 1.4

SO

P0^(-0.4) * T0^(1.4) = P1^(-0.4) * T1^(1.4)

T1^(1.4) = (P1^(0.4) * T0^(1.4))/(P0^(0.4))

T1^(1.4) = (P1)/(P0)^(0.4) * T0^(1.4)

T1 = T0 * (P1)/(P0)^(0.4/1.4)

T1 = T0 * (P1)/(P0)^(0.28)

SInce it is compressing, the fraction P1/P0 will always be greater than one, and raised to a positive fraction it will always yield a number greater than one, so the final temperature will be greater than the initial temperature.

After it was compressed the hot air will exchange heat with the barrel heating it up.

Link AB is to be made of a steel for which the ultimate normal stress is 65 ksi. Determine the cross-sectional area of AB for which the factor of safety will be 3.20. Assume that the link will be adequately reinforced around the pins at A and B.

Answers

Explanation:

ddddjidirjejekejwjwkw

If the specific surface energy for magnesium oxide is 1.0 J/m2 and its modulus of elasticity is (225 GPa), compute the critical stress required for the propagation of an internal crack of length 0.8 mm.

Answers

Answer:

critical stress required is  18.92 MPa

Explanation:

given data

specific surface energy = 1.0 J/m²

modulus of elasticity = 225 GPa

internal crack of length = 0.8 mm

solution

we get here one half length of internal crack that is

2a = 0.8 mm

so a = 0.4 mm = 0.4 × 10^(-3) m

so we get here critical stress that is

\sigma _c = \sqrt{(2E \gamma )/(\pi a)}     ...............1

put here value we get

\sigma _c =   \sqrt{(2* 225* 10^9 * 1 )/(\pi * 0.4* 10^(-3))}

\sigma _c =  18923493.9151 N/m²

\sigma _c =   18.92 MPa

The resultant force is directed along the positive x axis and has a magnitude of 1330 N. Determine the magnitude of F_A. Express your answer to three significant figures and include the appropriate units. Determine the direction theta of F_A. Express your answer using three significant figures.

Answers

Answer:

the magnitude of F_A is 752 N

the direction theta of F_A is 57.9°

Explanations:

Given that,

Resultant force = 1330 N in x direction

∑Fx = R

from the diagram of the question which i uploaded along with this answer

FB = 800 N

FAsin∅ + FBcos30 = 1330 N

FAsin∅ = 1330 - (800 × cos30)

FA = 637.18 / sin∅

Now ∑Fx = 0

FAcos∅ - FBsin30 = 0

we substitute for FA

(637.18 / sin∅)cos∅ = 800 × sin30

637.18 / 800 × sin30 = sin∅/cos∅

and we know that { sin∅/cos∅ = tan∅)

so tan∅ = 1.59295

∅ = 57.88° ≈ 57.9°

THEREFORE FROM THE EQUATION

FA = 637.18 / sin∅

we substitute ∅

so FA = 637.18 / sin57.88

FA = 752 N

The larger the Bi number, the more accurate the lumped system analysis. a)-True b)- False

Answers

Answer:

b). False

Explanation:

Lumped body analysis :

Lumped body analysis states that some bodies during heat transfer process remains uniform at all times. The temperature of these bodies is a function of temperature only. Therefor the heat transfer analysis based on such idea is called lumped body analysis.

                      Biot number is a dimensionless number which governs the heat transfer rate for a lumped body. Biot number is defined as the ratio of the convection transfer at the surface of the body to the conduction inside the body. the temperature difference will be uniform only when the Biot number is nearly equal to zero.  

                      The lumped body analysis assumes that there exists a uniform temperature distribution within the body. This means that the  conduction heat resistance should be zero. Thus the lumped body analysis is exact when biot number is zero.

In general it is assume that for a lumped body analysis, Biot number \leq 0.1

Therefore, the smaller the Biot number, the more exact is the lumped system analysis.