The average flow speed in a constant-diameter section of the Alaskan pipeline is 2.5 m/s. At the inlet, the pressure is 8.25 MPa (gage) and the elevation is 45 m; at the outlet, the pressure is 350 kPa (gage) and the elevation is 115 m. Calculate the head loss in this section of pipeline.

Answers

Answer 1
Answer:

Answer:

head loss = 805.327 m

Explanation:

given data

average flow speed v = 2.5 m/s

inlet pressure Pi = 8.25 MPa

elevation Zi =  45 m

outlet pressure Po = 350 kPa

elevation Zo = 115 m

we consider oil Specific Gravity = 0.92

to find out

head loss in this section of pipeline

solution

we find here head loss that is inlet and outlet  

Hi = (Pi)/(\rho g) +(Vi^2)/(2g) +Zi    ..............1

put here value  

Hi = (8.25*10^6)/(920*9.81) +(2.5^2)/(2*9.81) +45

Hi = 959.425 m

and

Hout = (Pout)/(\rho g) +(Vout^2)/(2g) +Zout    ..............2

put here value  

H out = (350*10^3)/(920*9.81) +(2.5^2)/(2*9.81) +115  

H out = 154.098 m

so  

head loss is = Hi - H out  

head loss is = 959.425 - 154.098  

head loss = 805.327 m


Related Questions

How much heat is lost through a 3’× 5' single-pane window with a storm that is exposed to a 60°F temperature differential?A. 450 Btu/hB. 900 Btu/hC. 1350 Btu/hD. 1800 Btu/h
Use Newton's method to determine the angle θ, between 0 and π/2 accurate to six decimal places. for which sin(θ) = 0.1. Show your work until you start computing x1, etc. Then just write down what your calculator gives you.
When circuit switching is used, what is the maximum number of circuit-switched users that can be supported? Explain your answer in your own words.
Fill in the empty function so that it returns the sum of all the divisors of a number, without including it. A divisor is a number that divides into another without a remainder.
What is the difference between absolute and gage pressure?

Air is compressed in a piston-cylinder device. List three examples of irreversibilities that could occur

Answers

Answer:

While air is compressed in a piston cylinder there are following types of irreversibilities

1.Due to finite temperature difference heat transfer take place between cylinder and surrounding.

2.Due friction force between cylinder and piston .

3.Compression process is so fast due to this ,it leads in the irreversibility of system.

As a means of preventing ice formation on the wings of a small, private aircraft, it is proposed that electric resistance heating elements be installed within the wings. To determine representative power requirements, consider nominal flight conditions for which the plane moves at 100 m/s in air that is at a temperature of -23 degree C. If the characteristic length of the airfoil is L = 2 m and wind tunnel measurements indicate an average friction coefficient of of C_f = 0.0025 for the nominal conditions, what is the average heat flux needed to maintain a surface temperature of T_s = 5 degree C?

Answers

Answer:

Average heat flux=3729.82 W/m^(2)

Explanation:

An interest buydown program offers to reduce interest rates by 4% from the base rate. Suppose the base rate for a loan of $8000 is 8% for 10 years. What is the monthly payment before and after the buydown? In this case, use monthly compounding, that is, the term is 120 payment periods, and the interest per month is 0.667% before and 0.333% after the buydown.

Answers

Answer: The monthly payment before the buydown is $71.3

The monthly payment after the buydown is $68.9

Explanation: The payment is compounding so we use compound interest;

A= P[1+(r/n)^nt]

Where;

A= Compounded amount

P = principal

r= interest rate per payment

n= number of payment per period

t= number of period.

NOTE: from our questions, the period is yearly and the payment is monthly. Therefore;

number of payment per period (n) is 12

number of payment period (t) is 10

P=$8000, r= 0.667% or 0.333%

FIND MONTHLY PAYMENT BEFORE BUYDOWN:

Step 1: find the Compounded amount to pay.

A= $8000[1+(0.00667÷12)^(12×10)]=

$8551.64 this is the total amount he has to pay for a period of 10years

Step 2: How much does he has to pay monthly for a period of 10year;

Therefore his payment will be for 120 months

$8551.64÷120= $71.3 monthly

FIND MONTHLY PAYMENT AFTER BUYDOWN:

Step 1: find the compounded amount to pay.

A= 8000[1+(0.00333÷12)^(12×10)=

$8270.85 this is the total amount he has to pay for a period of 10years

Step2: How much does he has to pay monthly for a period of 10year;

Therefore his payment will be for 120 months;

$8270.85÷120= $68.9 monthly

A 100-mm-diameter cast Iron shaft is acted upon by a 10 kN.m bending moment, a 8 kN.m torque, and a 150 kN axial force simultaneously. The ultimate tensile strength of the shaft material is 210 MPa, and the ultimate compressive strength of the shaft material is 750 MPa, determine the safety factor against failure for the above types of loading using a proper theory of failure.

Answers

Answer:

Are you smart You seem smart

Explanation:

im ur dad

5. Switch a in the circuit has been open for a long time and switch b has been closed for a long time. Switch a is closed at t = 0. After remaining closed for 1s, switches a and b are opened simultaneously and remain open indefinitely. Determine the expression for the inductor current i that is valid when (a) 0 ≤ t ≤ 1s and (b) t ≥ 1s

Answers

Answer:

(a) 1/L∫Vdt; integral t [0,1]

(b) 1/L∫Vdt; integral t [ 1, infinity]

Explanation:

An Inductor current I, flowing through an inductor depends on the voltage, V, across the inductor and the inductance, L, of the inductor. The switch 1, 2 timing varies the voltage V with time t

The expression for inductor current is given as:

I= 1/L∫Vdt,

where I is equal to the current flowing through the inductor, L is equal to the inductance of the inductor, and V is equal to the voltage across the inductor.

The formula can also be written as:

I= I0 + 1/L∫Vdt, where I is inductor current at time t, and io is inductor current at t = 0. Time can be varied by controlling the switch

A small family home in Tucson, Arizona has a rooftop area of 2667 square feet, and it is possible to capture rain falling on about 61.0% of the roof. A typical annual rainfall is about 14.0 inches. If the family wanted to install a tank to capture the rain for an entire year, without using any of it, what would be the required volume of the tank in m3 and in gallons? How much would the water in a full tank of that size weigh (in N and in lbf)?

Answers

Answer:

volume  = 53.747 m3 = 14198.138 gal

weight = 526652 N = 118396.08 lbf

Explanation:

We know that volume of water

volume  =  A'* H

where A' = 61% of A

              = 0.61* 2667 = 1626.87 sq ft

volume  =  1626.87 * ((14)/(12) ft)

               =1898.015 ft^3

in\ m^3 = ( 1898.015)/(35.315) =   53.7457 m^3

in\ gallon = 1898.015 * 7.481 = 14198.138 gallon

weight = \rho Vg

       = 1000* 53.74* 9.8

             =526652 N

In\ lbf =  (526652)/(4.448) = 118396.08 lbf