How much heat is lost through a 3’× 5' single-pane window with a storm that is exposed to a 60°F temperature differential?A. 450 Btu/hB. 900 Btu/hC. 1350 Btu/hD. 1800 Btu/h

Answers

Answer 1
Answer:

Answer:

A. 450 btu/h

Explanation:

We solve this problem by using this formula:

Q = U x TD x area

U = U value of used material

TD = Temperature difference = 60°

Q = heat loss

Area = 3x5 = 15

We first find U

R = 1/u

2 = 1/U

U = 1/2 = 0.5

Then when we put these values into the formula above, we would have:

Q = 0.5 x 15 x 60

Q = 450Btu/h

Therefore 450btu/h is the answer


Related Questions

Where should the Q point of an amplifier be on a DC load line to have the LARGEST linear output?
For a steel alloy it has been determined that a carburizing heat treatment of 11-h duration will raise the carbon concentration to 0.38 wt% at a point 2.3 mm from the surface. Estimate the time (in h) necessary to achieve the same concentration at a 5.3 mm position for an identical steel and at the same carburizing temperature.
An experimental arrangement for measuring the thermal conductivity of solid materials involves the use of two long rods that are equivalent in every respect, except that one is fabricated from a standard material of known thermal conductivity kA while the other is fabricated from the material whose thermal conductivity kB is desired. Both rods are attached at one end to a heat source of fixed temperature Tb, are exposed to a fluid of temperature [infinity] T[infinity], and are instrumented with thermocouples to measure the temperature at a fixed distance x1 from the heat source. If the standard material is aluminum, with kA= 200 W/m·K, and measurements reveal values of TA= 75°C and TB= 70°C at x1 for Tb= 100°C and [infinity] T[infinity]= 25°C, what is the thermal conductivity kB of the test material?
Fill in the empty function so that it returns the sum of all the divisors of a number, without including it. A divisor is a number that divides into another without a remainder.
Clothing made of several thin layers of fabric with trapped air in between, often called ski clothing, is commonly used in cold climates because it is light, fashionable, and a very effective thermal insulator. So, it is no surprise that such clothing has largely replaced thick and heavy old-fashioned coats. Consider a jacket made up of six layers of 0.1 mm thick synthetic fabric (k = 0.026W/m.K) with 1.2 mm thick air space (k = 0.026 W/m.K) between the fabric layers. Assuming the inner surface temperature of the jacket to be 25˚C and the surface area to be 1.25 m2 , determine the heat loss through the jacket when the temperature of the outdoors is -5˚C and the heat transfer co-efficient of outer surface is 25 W/m2 .K. What would be the thickness of a wool fabric (k = 0.035W/m.K) if the person has to achieve the same level of thermal comfort wearing a thick wool coat instead of a jacket. (30 points)

An activated sludge plant is being designed to handle a feed rate of 0.438 m3 /sec. The influent BOD concentration is 150 mg/L and the cell concentration (MLVSS) is 2,200 mg/L. If you wish to operate the plant with a food-to-microorganism ratio of 0.20 day-1 , what volume of aeration tank should you use? Please give your answer in m3 .

Answers

Answer:

Volume of aeration tank = 1.29 x 10^4 m³

Explanation:

Food/Micro- organism Ratio = 0.2/day

Feed Rate (Q) = 0.438 m³/s

Influent BOD = 150 mg/L

MLVSS = 2200 mg/L

The above mentioned parameters are related by the equation

F/M = QS₀/VX

where S₀ is the influent BOD and X is the cell concentration, with V being the Volume of the tank. Re- arranging the above equation for V and putting the values in, we get

V = 0.4380 x 150/0.2 x 2200

V = 0.1493 (m³/s) x day

V = 0.1493 x 24 x 60 x 60

V = 1.29 x 10^4 m³

What are the general principles of DFA? What are the steps to minimize the number of parts for an assembly?

Answers

Answer Explanation : The general principles for design for assembly (DFA) are,

  • MINIMIZE NUMBER OF COMPONENT
  • USE STANDARD COMMERCIALLY AVAILABLE COMPONENTS
  • USE COMMON PARTS ACROSS PRODUCT LINES
  • DESIGN FOR EASE OF PART FABRICATION
  • DESIGN PARTS WITH TOLERANCE THAT ARE WITHIN PROCESS CAPABILITY
  • MINIMIZE USE OF FLEXIBLE COMPONENT
  • DESIGN FOR EASE OF ASSEMBLY
  • USE MODULAR DESIGN
  • REDUCE ADJUSTMENT REQUIRED

STEPS TO MINIMIZE THE NUMBER OF PARTS

  • USE OF INCORPORATE HINGS
  • USE OF INTEGRAL SPRINGS
  • USE OF SNAP FITS
  • USE OF GUIDES BEARINGS
  • USE OF COVERS

Calculate how large a mass would be necessary to obtain a mechanical noise limit of [Equation] = 1 nG, 1 µG, and 1 mG if the mechanical resonance frequency is [Equation] = 100 Hz. If the mass is to be made of cube of `silicon, what would its physical dimensions be?

Answers

Answer:

Mechanical resonance frequency is the frequency of a system to react sharply when the frequency of oscillation is equal to its resonant frequency (natural frequency).

The physical dimension of the silicon is 10kg

Explanation:

Using the formular, Force, F = 1/2π√k/m

At resonance, spring constant, k = mw² ( where w = 2πf), when spring constant, k = centripetal force ( F = mw²r).

Hence, F = 1/2π√mw²/m = f ( f = frequency)

∴ f = F = mg, taking g = 9.8 m/s²

100 Hz = 9.8 m/s² X m

m = 100/9.8 = 10.2kg

Assuming that the following three variables have already been declared, which variable will store a Boolean value after these statements are executed? choice = true;
again = "false";
result = 0;

a. choice
b. again
c. result
d. none of these are Boolean variables

Answers

Answer:

C

Explanation:

Boolean Algebra deals with either a one or a zero and how to manipulate them in computers or elsewhere. The "choice" option may not work, since for text it must be enclosed in quotation marks, usually. For "again," it's text and not a 1 or 0. So, the answer is C, since this is a 0.

A hydraulic jump is induced in an 80 ft wide channel. The water depths on either side of the jump are 1 ft and 10 ft. Please calculate: a) The velocity of the faster moving flow. b) The flow rate (discharge). c) The Froude number of the sub-critical flow. d) The flow energy dissipated in the hydraulic jump (expressed as percentage of the energy prior to the jump). e) The critical depth.

Answers

Answer:

a) The velocity is 42.0833 ft/s

b) The flow rate is 3366.664 ft³/s

c) The Froude number is 0.2345

d) The flow energy dissipated (expressed as percentage of the energy prior to the jump) is 18.225 ft

e) The critical depth is 3.8030 ft

Explanation:

Given data:

80 ft wide channel, L

1 ft and 10 ft water depths, d₁ and d₂

Questions: a) Velocity of the faster moving flow, v = ?

b) The flow rate (discharge), q = ?

c) The Froude number, F = ?

d) The flow energy dissipated, E = ?

e) The critical depth, dc = ?

a) For the velocity:

(d_(2) )/(d_(1) ) =(1)/(2) (\sqrt{1+8F^(2) } -1)

10*2=\sqrt{1+8F^(2) } -1

Solving for F:

F = 7.4162

v=F\sqrt{gd_(1) }

Here, g = gravity = 32.2 ft/s²

v=7.4162*√(32.2*1) =42.0833ft/s

b) The flow rate:

q=v*L*d_(1) =42.0833*80*1=3366.664ft^(3) /s

c) The Froude number:

v_(2) =(q)/(L*d_(2) ) =(3366.664)/(80*10) =4.2083ft/s

F=\frac{v_(2)}{\sqrt{gd_(2) } } =(4.2083)/(√(32.2*10) ) =0.2345

d) The flow energy dissipated:

E=((d_(2)-d_(1))^(3) )/(4d_(1)d_(2)) =((10-1)^(3) )/(4*1*10) =18.225ft

e) The critical depth:

d_(c) =((((q)/(L))^(2)  )/(g) )^(1/3) =((((3366.664)/(80))^(2)  )/(32.2) )^(1/3) =3.8030ft

What is the difference between absolute and gage pressure?

Answers

Explanation:

Step1

Absolute pressure is the pressure above zero level of the pressure. Absolute pressure is considering atmospheric pressure in it. Absolute pressure is always positive. There is no negative absolute pressure.

The expression for absolute pressure is given as follows:

P_(ab)=P_(g)+P_(atm)

Here, P_(ab) is absolute pressure, P_(g) is gauge pressure andP_(atm) is atmospheric pressure.

Step2

Gauge pressure is the pressure that measure above atmospheric pressure. It is not considering atmospheric pressure. It can be negative called vacuum or negative gauge pressure. Gauge pressure used to simplify the pressure equation for fluid analysis.