What is the average distance in microns an electron can travel with a diffusion coefficient of 25 cm^2/s if the electron lifetime is 7.7 microseconds. Three significant digits and fixed point notation.

Answers

Answer 1
Answer:

Answer: The average distance the electron can travel in microns is 1.387um/s

Explanation: The average distance the electron can travel is the distance an exited electron can travel before it joins together. It is also called the diffusion length of that electron.

It is gotten, using the formula below

Ld = √DLt

Ld = diffusion length

D = Diffusion coefficient

Lt = life time

Where

D = 25cm2/s

Lt = 7.7

CONVERT cm2/s to um2/s

1cm2/s = 100000000um2/s

Therefore D is

25cm2/s = 2500000000um2/s = 2.5e9um2/s

Ld = √(2.5e9 × 7.7) = 138744.37um/s

Ld = 1.387e5um/s

This is the average distance the excited electron can travel before it recombine


Related Questions

How do we use the brakes in the airplane?
A chemical process converts molten iron (III) oxide into molten iron and carbon dioxide by using a reducing agent of carbon monoxide. The process allows 10.08 kg of iron to be produced from every 16.00 kg of iron (III) oxide in an excess of carbon monoxide. Calculate the percentage yield of iron produced in this process.
Clothing made of several thin layers of fabric with trapped air in between, often called ski clothing, is commonly used in cold climates because it is light, fashionable, and a very effective thermal insulator. So, it is no surprise that such clothing has largely replaced thick and heavy old-fashioned coats. Consider a jacket made up of six layers of 0.1 mm thick synthetic fabric (k = 0.026W/m.K) with 1.2 mm thick air space (k = 0.026 W/m.K) between the fabric layers. Assuming the inner surface temperature of the jacket to be 25˚C and the surface area to be 1.25 m2 , determine the heat loss through the jacket when the temperature of the outdoors is -5˚C and the heat transfer co-efficient of outer surface is 25 W/m2 .K. What would be the thickness of a wool fabric (k = 0.035W/m.K) if the person has to achieve the same level of thermal comfort wearing a thick wool coat instead of a jacket. (30 points)
FILLIN THE BLANK Buffering is an important op amp application because it solves _____ that can't easily be solved with purely resistive circuits.Group of answer choices
There are three homes being built, each with an identical deck on the back. Each deck is comprised of two separate areas. One area is 112.5 square feet, while the other is136,4 square feet. What is the total square footage of the decks for all three homos? Your answer should be to the nearest tonth of a square

Assuming that the following three variables have already been declared, which variable will store a Boolean value after these statements are executed? choice = true;
again = "false";
result = 0;

a. choice
b. again
c. result
d. none of these are Boolean variables

Answers

Answer:

C

Explanation:

Boolean Algebra deals with either a one or a zero and how to manipulate them in computers or elsewhere. The "choice" option may not work, since for text it must be enclosed in quotation marks, usually. For "again," it's text and not a 1 or 0. So, the answer is C, since this is a 0.

The following program includes fictional sets of the top 10 male and female baby names for the current year. Write a program that creates: A set all_names that contains all of the top 10 male and all of the top 10 female names. A set neutral_names that contains only names found in both male_names and female_names. A set specific_names that contains only gender specific names. Sample output for all_names: {'Michael', 'Henry', 'Jayden', 'Bailey', 'Lucas', 'Chuck', 'Aiden', 'Khloe', 'Elizabeth', 'Maria', 'Veronica', 'Meghan', 'John', 'Samuel', 'Britney', 'Charlie', 'Kim'}

Answers

The program analyses a set of male and female names and displays, the combined set of names, specific names and neutral names. The program written in python 3 goes thus :

male_names = {'John', 'Bailey', 'Charlie', 'Chuck', 'Michael', 'Samuel', 'Jayden', 'Aiden', 'Henry', 'Lucas'}

#setofmalenames

female_names = {'Elizabeth', 'Meghan', 'Kim', 'khloe','Bailey', 'Jayden' , 'Aiden', 'Britney', 'Veronica', 'Maria'}

#setoffemalenames

neutral_names = male_names.intersection(female_names)

#names common to both males and females

all_names = male_names.union(female_names)

#set of all baby names ; both male and female

specific_names = male_names.symmetric_difference(female_names)

#name in one set and not in the other

print(all_names)

print(' ')

#leavesaspaceinbetweenthelines

print(specific_names)

print(' ')

print(neutral_names)

Asamplerunoftheprogramisattached.

Learn more :brainly.com/question/9908895

Answer:

Please see attachment

Explanation:

Please see attachment

In a TDM communication example, 15 voice signals are badlimited to 5kHz and transmitted simultaneously using PAM. What is a preliminary estimate for the required system bandwidth?(a) 10 kHz
(b) 75 kHz
(c) 80 kHz
(d) 160 kHz
(e) None of the above.

Answers

Answer:

Option D

160 kHz

Explanation:

Since we must use at least one synchronization bit, total message signal is 15+1=16

The minimum sampling frequency, fs=2fm=2(5)=10 kHz

Bandwith, BW required is given by

BW=Nfs=16(10)=160 kHz

A 5000-ft long X-65 pipeline is laid down on seabed with two PLETS (One at each end). The pipe OD=7-in with 0.5-in wall thickness. The pipeline was laid at environmental temperature of 40 °F (As- laid temperature). When pipeline is put into operation, the oil flow was produced at 140 °F. If the thermal expansion coefficient of the pipe material is 6.5*10-/°F and its modulus of elasticity is 30,000 ksi, determine the compressive load applied by the pipeline on a PLET due to its thermal expansion. Assume no temperature change and no seabed friction along the pipeline span.

Answers

Answer: 199.1 kip

Explanation:

Given that

Outer diameter is Do = 7 in

Inner diameter Di = ( Do - ( 2×0.5)) = 6 in

Length = 5000 ft = 60000 in

Now change in length of the pipe due to temperature difference

SL = L∝ΔT

= 60000 × 6.5×10^-6(140-40)

SL = 39 in

Also

sL = PL/AE

A = cross sectional area of pipe = π/4(Do^2 - Di^2)

so

P = SL×A×E / L

= (39 × π/4(7^2 - 6^2)×30000) / 60000

= 199.1 kip

compressive load applied by the pipeline on a PLET due to its thermal expansion is 199.1 kip

A certain solar energy collector produces a maximum temperature of 100°C. The energy is used in a cyclic heat engine that operates in a 10°C environment. What is the maximum thermal efficiency? What is it if the collector is redesigned to focus the incoming light to produce a maximum temperature of 300°C?

Answers

Answer:

\eta _(max) = 0.2413 = 24.13%

\eta' _(max) = 0.5061 = 50.61%

Given:

T_(1max) = 100^(\circ) = 273 + 100 = 373 K

operating temperature of heat engine, T_(2) = 10^(\circ) = 273 + 10 = 283 K

T_(3max) = 300^(\circ) = 273 + 300 = 573 K

Solution:

For a  reversible cycle, maximum efficiency, \eta _(max) is given by:

\eta _(max) = 1 - (T_(2))/(T_(1max))

\eta _(max) = 1 - (283)/(373) = 0.24

\eta _(max) = 0.2413 = 24.13%

Now, on re designing collector, maximum temperature, T_(3max) changes to 300^(\circ), so, the new maximum efficiency,  \eta' _(max) is given by:

\eta' _(max) = 1 - (T_(2))/(T_(3max))

\eta _(max) = 1 - (283)/(573) = 0.5061

\eta _(max) = 0.5061 = 50.61%

With the aid of a labbled diagram describe the operation of a core type single phase transformer​

Answers

Answer:

A simple single-phase transformer has each winding being wound cylindrically on a soft iron limb separately to provide a necessary magnetic circuit, which is commonly referred to as “transformer core”. It offers a path for the flow of the magnetic field to induce voltage between two windings.