Determine the boundary work done by a gas during an expansion process if the pressure and volume values at various states are measured to be 300 kPa, 1 L; 290 kPa, 1.1 L; 270 kPa, 1.2 L; 250 kPa, 1.4 L; 220 kPa, 1.7 L; and 200 kPa, 2 L

Answers

Answer 1
Answer:

By Riemann sums, the boundarywork done by a gas during an expansionprocess based on the information given by the statement is approximately 0.243 joules.

How to determine the boundary work done by a gas during an expansion process

A process is a consecution of states of a system. The boundary work (W), in kilojoules, is the work done by the system on surroundings and in a P-Vdiagram this kind of work is equal to the area below the curve, which can be approximated by Riemann sums:

W = \sum\limits_(i=1)^(n-1) p_(i)\cdot (V_(i+1)-V_(i)) + (1)/(2)\sum\limits_(i=1)^(n-1) (p_(i+1)-p_(i))\cdot (V_(i+1)-V_(i))     (1)

Where:

  • p - Pressure, in kilopascals.
  • V - Volume, in cubic meters.

W = (1)/(2) \sum\limits_(i=1)^(n-1) (p_(i+1)+p_(i))\cdot (V_(i+1)-V_(i))

Now we proceed to calculate the boundary work:

W = 0.5 · [(300 kPa + 290 kPa) · (1.1 × 10⁻³ m³ - 1 × 10⁻³ m³) + (270 kPa + 290 kPa) · (1.2 × 10⁻³ m³ - 1.1 × 10⁻³ m³) + (250 kPa + 270 kPa) · (1.4 × 10⁻³ m³ - 1.2 × 10⁻³ m³) + (220 kPa + 250 kPa) · (1.7 × 10⁻³ m³ - 1.4 × 10⁻³ m³) + (200 kPa + 220 kPa) · (2 × 10⁻³ m³ - 1.7 × 10⁻³ m³)]

W = 0.243 kJ

By Riemann sums, the boundarywork done by a gas during an expansionprocess based on the information given by the statement is approximately 0.243 joules.

To learn more on boundary work, we kindly invite to check this: brainly.com/question/17136485

#SPJ2

Answer 2
Answer:

Answer:

attached below

Explanation:


Related Questions

The Rappahannock River near Warrenton, VA, has a flow rate of 3.00 m3/s. Tin Pot Run (a pristine stream) discharges into the Rappahannock at a flow rate of 0.05 m3/s. To study mixing of the stream and river, a conserva- tive tracer is to be added to Tin Pot Run. If the instruments that can mea- sure the tracer can detect a concentration of 1.0 mg/L, what minimum concentration must be achieved in Tin Pot Run so that 1.0 mg/L of tracer can be measured after the river and stream mix? Assume that the 1.0 mg/L of tracer is to be measured after complete mixing of the stream and Rappa- hannock has been achieved and that no tracer is in Tin Pot Run or the Rap- pahannock above the point where the two streams mix. What mass rate (kg/d) of tracer must be added to Tin Pot Run?
Air enters a compressor operating at steady state at 1.05 bar, 300 K, with a volumetric flow rate of 39 m3/min and exits at 12 bar, 400 K. Heat transfer occurs at a rate of 6.5 kW from the compressor to its surroundings. Assuming the ideal gas model for air and neglecting kinetic and potential energy effects, determine the power input, in kW.
Transactional Vs Transformational Leadership. Using the Internet, each member of your team should read at least 2 articles each on Transactional Vs Transformational Leadership. Summarize the articles in 300 words or more. Provide appropriate reference. Combine each summarize in one paper but do not change the wording of the original summary. As a term, write a comprehensive summary of the articles. Present a discussion of what your team learned from this exercise?
Q1. A truck traveling at 40 mph is approaching a stop sign. At time ????0 and at a distance of 80ft, the truck begins to slow down by decelerating rate of 12 ft/sec2 . Will the truck be able to stop in time?
A 1-m3 tank containing air at 10°C and 350 kPa is connected through a valve to another tank containing 3 kg of air at 35°C and 150 kPa. Now the valve is opened, and the entire system is allowed to reach thermal equilibrium with the surroundings, which are at 19.5°C. Determine the volume of the second tank and the final equilibrium pressure of air. The gas constant of air is R = 0.287 kPa·m3/kg·K.

A household refrigerator that has a power input of 450 W and a COP of 1.5 is to cool 5 large watermelons, 10 kg each, to 8 C. If the watermelons are initially at 28 C, determine how long it will take for the refrigerator to cool them.

Answers

Answer:

\Delta t = 5866.667\,s\,(97.778\,m)

Explanation:

The specific heat for watermelon above freezing point is 3.96\,(kJ)/(kg\cdot K). The heat liberated by the watermelon to cool down to 8°C is:

Q_(cooling) = (5)\cdot (10\,kg)\cdot (3.96\,(kJ)/(kg\cdot K) )\cdot (20\,K)

Q_(cooling) = 3960\,kJ

The heat absorbed by the household refrigerator is:

\dot Q_(L) = COP\cdot \dot W_(e)

\dot Q_(L) = 1.5\cdot (0.45\,kW)

\dot Q_(L) = 0.675\,kW

Time needed to cool the watermelons is:

\Delta t = (Q_(cooling))/(\dot Q_(L))

\Delta t = (3960\,kJ)/(0.675\,kW)

\Delta t = 5866.667\,s\,(97.778\,m)

 

Select the true statements regarding rigid bars. a. A rigid bar can bend but does not change length.
b. A rigid bar does not bend regardless of the loads acting upon it.
c. A rigid bar deforms when experiencing applied loads.
d. A rigid bar is unable to translate or rotate about a support.
e. A rigid bar represents an object that does not experience deformation of any kind.

Answers

Answer:

option b and E are true

Explanation:

A lever is an example of a rigid bar that can rotate around a given point. In a rigid material, the existing distance does not change whenever any load is placed on it. In such a material, there can be no deformation whatsoever. Wit this explanation in mind:

option a is incorrect, given that we already learnt that no deformation of any kind happens in a rigid bar.

option b is true. A rigid bar remains unchanged regardless of the load that it carries.

option c is incorrect, a rigid bar does not deform with loads on it

option d is incorrect. A lever is a type of rigid bar, a rigid bar can rotate around a support.

option e is true. A rigid bar would not experience any deformation whatsoever.

Will mark brainliest if correctWhen a tractor is driving on a road, it must have a SMV sign prominently displayed.

True
False

Answers

Answer: true

Explanation:

After the load impedance has been transformed through the ideal transformer, its impedance is: + . Enter the real part in the first blank and the imaginary part in the second blank. If a value is negative, include the negative sign. Provide up to four digits of precision. If the exact value can be provided with fewer digits, merely provide the exact value. These instructions pertain to the following blanks as well. What is the total impedance seen by the source? + . What is the current phasor Ig (expressed in rectangular form)?

Answers

Answer:

Ig =7.2 +j9.599

Explanation: Check the attachment

A 24.3-foot long pipe use to carry solvent through a chemical plant is made of two layers. The inner layer is a one-inch schedule 30 stainless steel (AISI 304) pipe. An outer coating is made of plain carbon steel and is 0.075 inches thick. The hot solvent stream can be assumed to have a constant temperature of 180.0oF as it passes through the pipe. On the outside of the pipe is air at 85.0oF. Given the solvent has a convective heat transfer coefficient of 275 Btu/h-ft^2-oF, while the air has a convective heat transfer coefficient of 140 Btu/h-ft^2-oF.A. Determine UA and q for heat transfer in this system. (Since the problem is given in English units, your answer should also be in English units)
B. Determine the overall heat transfer coefficients, U; and U., for the pipe.
C. Would your answer change if the two materials were swapped so that the inside material were carbon steel and the outside material of the pipe were made of AISI 304 stainless steel? If so, calculate new values for UA and q. If not, explain why your answer would not change. (Here, assume the dimensions of the inner material (now plain carbon steel) match those of the AISI 304 schedule 30 stainless steel from part A, and the stainless steel is 0.075 inches thick on the outside.)

Answers

Sorry man i dont know the answer to this one

Yield and tensile strengths and modulus of elasticity . with increasing temperature. (increase/decrease/independent)

Answers

Answer:

Yield strength, tensile strength decreases with increasing temperature and modulus of elasticity decreases with increasing in temperature.

Explanation:

The modulus of elasticity of a material is theoretically a function of the shape of curve plotted between the potential energy stored in the material as it is loaded versus the inter atomic distance in the material. The temperature distrots the molecular structure of the metal and hence it has an effect on the modulus of elasticity of a material.

Mathematically we can write,

E(t)=E_o[1-a(T)/(T_m)]

where,

E(t) is the modulus of elasticity at any temperature 'T'

E_o is the modulus of elasticity at absolute zero.

T_(m) is the mean melting point of the material

Hence we can see that with increasing temperature modulus of elasticity decreases.

In the case of yield strength and the tensile strength as we know that heating causes softening of a material thus we can physically conclude that in general the strength of the material decreases at elevated temperatures.