how many grams of F2 are needed to react with 3.50 grams of Cl2 Equation needed for question- Cl2+3F2-->2ClF3 please explain how to get the answer.

Answers

Answer 1
Answer:

Answer:

5.62 g of F2

Explanation:

We have to start with the chemical reaction:

Cl_2~+~3F_2~-->~2ClF_3

We have a balanced reaction, so we can continue with the mol calculation. For this, we need to know the molar mass of Cl_2  (70.906 g/mol), so:

3.5~g~Cl_2(1~mol~Cl_2)/(70.906~g~Cl_2)=0.049~mol~Cl_2

Now, with the molar ratio between Cl_2  and F_2  we can convert from moles of Cl_2  and F_2  (1:3), so:

0.049~mol~Cl_2(3~mol~F_2)/(1~mol~Cl_2)=0.148~mol~F_2

Finally, with the molar mass of F_2 we can calculate the gram of F_2 (37.99 g/mol), so:

0.148~mol~F_2(37.99~g~F_2)/(1~mol~F_2)=5.62~g~F_2

I hope it helps!


Related Questions

The amount of I − 3 ( aq ) in a solution can be determined by titration with a solution containing a known concentration of S 2 O 2 − 3 ( aq ) (thiosulfate ion). The determination is based on the net ionic equation 2 S 2 O 2 − 3 ( aq ) + I − 3 ( aq ) ⟶ S 4 O 2 − 6 ( aq ) + 3 I − ( aq ) Given that it requires 29.4 mL of 0.380 M Na 2 S 2 O 3 ( aq ) to titrate a 30.0 mL sample of I − 3 ( aq ) , calculate the molarity of I − 3 ( aq ) in the solution.
Use the internet or your textbook as a reference to compare and contrast the Arrhenius Theory of acids and bases vs. the Brønsted-Lowery Theory. Use the internet or your textbook as a reference to name the following and indicate if they are an acid or a base: a. HCI b. KOH c. HNO d. Mg(OH),
Write the net ionic equation for the precipitation reaction that occurs when aqueous solutions of potassium sulfide and chromium(II) nitrate are combined. Use the pull-down boxes to specify states such as (aq) or (s). If a box is not needed leave it blank. 2Cr^3+ + 3S^2- (aq) + + rightarrow Cr_2S_4 (s) +
What substance is produced by the reaction: H+[aq]+OH-[aq]=?
Sulfurous acid is a diprotic acid with the following acid-ionization constants: Ka1 = 1.4x10−2, Ka2 = 6.5x10−8 If you have a 1.0 L buffer containing 0.252 M NaHSO3 and 0.139 M Na2SO3, what is the pH of the solution after addition of 50.0 mL of 1.00 M NaOH? Enter your answer numerically to 4 decimal places.

A solution containing 292 g of Mg(NO3)2 per liter has a density of 1.108 g/mL. The molality of the solution is:A) 2.00 m

B) 1.77 m

C) 6.39 m

D) 2.41 m

E) none of these

Answers

Answer: D) 2.41 m

Explanation:

Molality of a solution is defined as the number of moles of solute dissolved per kg of the solvent.

Molality=(n)/(W_s)

where,

n = moles of solute

 W_s = weight of solvent in kg

moles of solute =\frac{\text {given mass}}{\text {molar mass}}=(292g)/(148g/mol)=1.97moles

volume of solution = 1L = 1000 ml      (1L=1000ml)

Mass of solution={\text {Density of solution}}* {\text {Volume of solution}}=1.108g/ml* 1000ml=1108g

mass of solute = 292 g

mass of solvent = mass of solution - mass of solute = (1108- 292) g = 816g = 0.816 kg

Now put all the given values in the formula of molality, we get

Molality=(1.97moles)/(0.816kg)=2.41mole/kg

Therefore, the molality of solution will be 2.41 mole/kg

Final answer:

In this problem, we calculate molality by using the given mass of the solute, the mass of the solvent, and the molar mass of the solute. After performing the necessary calculations, we find that the molality is 2.41 m.

Explanation:

The subject of this student's question is molality, which is a measure of the concentration of a solute in a solution. It is defined as the number of moles of solute per kilogram of solvent. To find the molality (m), we need to know the mass of the solute and the mass of the solvent in the solution.

Given, that the solution contains 292g of Mg(NO3)2 per liter (which is the mass of the solute). The density of the solution is 1.108g/mL. We know that 1L = 1000mL, so the mass of the solution is density x volume = 1.108g/mL x 1000mL = 1108g.

We need to find the mass of the solvent (water). The mass of the solution is the mass of the solute + the mass of the solvent. So, the mass of the solvent is 1108g(mass of the solution) - 292g(mass of solute) = 816g or 0.816gkg.

The molar mass of Mg(NO3)2 is 148.31452 g/mol. So, the number of moles of Mg(NO3)2 in the solution is moles = mass / molar mass = 292g / 148.31452 g/mol = 1.97 moles.

Now we can calculate molality (m) = moles of solute/mass of solvent in kg = 1.97 moles / 0.816 kg = 2.41 m. Therefore, the answer is D) 2.41 m.

Learn more about Molality here:

brainly.com/question/26921570

#SPJ3

Find the weighted average of these values. Col1 Value 5.00 6.00 7.00Col2 Weight 75.0 % 15.0 % 10.0 %

Answers

The weighted average (Avg) for these values has been 5.35.

The weighted average has been an arithmetic calculation of the mean value for the percent abundance of each value.

Computation for weighted average

The weighted average (Avg) for the values has been given by:

Avg=V_1\;*\;(W_1)/(100)\;+\;V_2\;*\;(W_2)/(100)\;+\;V_3\;*\;(W_3)/(100)

The values have been given,

V_1=5\nV_2=6\nV_3=7

The weighted average has been given as:

W_1=75\nW_2=15\nW_3=10

For the given set of values, the weighted average (Avg) has been given as:

Avg=5\;*\;(75)/(100)\;+\;6\;*\;(15)/(100)\;+\;7\;*\;(10)/(100)\nAvg=5\;*\;0.75\;+\;6\;*\;.015\;+\;7\;*\;0.1\nAvg=5.35

The weighted average (Avg) for these values has been 5.35.

Learn more about weighted average, here:

brainly.com/question/18554478

Answer:

5.35

Explanation:

Value   5.00        6.00       7.00

Weight 75.0%     15.0%      10.0 %

We can determine the weighted average of these values using the following expression.

Weighted average = ∑ wi × xi

where,

w: relative weight

x: value

Weighted average = 5.00 × 0.750 + 6.00 × 0.150 + 7.00 × 0.100

Weighted average = 5.35

WHAT IS THE COLOR OF METHYL ORANGE


1. YELLOW
2. PINK
3. ORANGE​

Answers

Answer:

3.Orange it literally say's it methyl ORANGE

Explanation:

Brainliest plz

Answer:

Other indicators

Indicator Acidic Alkaline

Methyl orange Red Yellow

Phenolphthalein Colourless Pink

Refer to the example about diatomic gases A and B in the text to do problems 20-28.It was determined that 1 mole of B2 is needed to react with 3 moles of A2.
How many grams in one mole of B2?
__g

Answers

Final answer:

The number of grams in one mole of B2 can be calculated using the atomic mass of element B. This is found on the periodic table and then doubled for B2 since it's diatomic. If B is Oxygen for instance, 1 mole of B2 (O2) weighs 32 grams.

Explanation:

To find the number of grams in one mole of B2, we need to know the atomic mass of element B, which isn't provided in your question. However, you can find this information on the periodic table. Once you have the atomic mass of B, you can calculate the molar mass of B2 (which is two times the atomic mass of B) since 1 mole of a substance corresponds to its molar mass in grams.

For example, if element B is Oxygen (O), its atomic mass is approximately 16 g/mol. Therefore, the molar mass of B2 (O2 in this case) would be 32 g/mol. Hence, 1 mole of B2 (or O2) would weigh 32 grams.

Learn more about Molar Mass here:

brainly.com/question/12127540

#SPJ12

An X-ray photon with a wavelength of 0.954 nm strikes a surface. The emitted electron has a kinetic energy of 959 eV.Part A:

What is the binding energy of the electron in kJ/mol? [Note that KE = = mv2 and 1 electron volt (eV) = 1.602 x 10-19 J.] ​

Answers

Answer:

An X-ray photon of wave length 0.989 nm strikes a surface. The emitted electron has a kinetic energy of 969 eV. What is the binding energy of the electron in kJ/mol? [KE=

1

2

mv2;1 electron volt (eV)=1.602×10−19J][KE=

2

1

mv

2

;1 electron volt (eV)=1.602

Final answer:

The photoelectric effect equation is used to find the binding energy of an electron when an X-ray photon with a specific wavelength strikes a surface, taking into account the kinetic energy of the ejected electron and the energy of the photon.

Explanation:

To calculate the binding energy of an electron when an X-ray photon with a given wavelength strikes a surface, you use the photoelectric effect equation which connects the energy of the photon (E = hc/λ) with the kinetic energy (KE) of the ejected electron and the binding energy (BE) that keeps the electron attached to the atom.

The equation is: KE + BE = hc/λ, where h is Planck's constant (6.626 x 10-34 J s), c is the speed of light (3.00 x 108 m/s), and λ is the wavelength of the photon.

The given kinetic energy of the electron is 959 eV, which can be converted to joules (1 eV = 1.602 x 10-19 J). The energy of the photon can be calculated using the wavelength. Binding energy is then found by subtracting the electron's kinetic energy from the energy of the photon.

To find the binding energy per mole, you can use Avogadro's number (6.022 x 1023 mol-1) to calculate the total binding energy in a mole of such electrons and then convert it to kilojoules.

Learn more about Photoelectric Effect here:

brainly.com/question/35875610

#SPJ12

A sample of solid calcium hdroxide, Ca(OH)2 is allowed to stand in water until a saturated solution is formed. A titration of 75.00mL of this solution with 5.00 x 10-2 M HCl 36.6 mL of the acid to reach the end pointCa(OH)2 + 2HCl ? CaCl + 2H2O
What is the molarity?

Answers

Answer: The concentration of Ca(OH)_2 is 0.0122 M.

Explanation:

To calculate the concentration of base, we use the equation given by neutralization reaction:

n_1M_1V_1=n_2M_2V_2

where,

n_1,M_1\text{ and }V_1 are the n-factor, molarity and volume of acid which is HCl

n_2,M_2\text{ and }V_2 are the n-factor, molarity and volume of base which is Ca(OH)_2

We are given:

n_1=1\nM_1=5.00* 10^(-2)M=0.05M\nV_1=36.6mL\nn_2=2\nM_2=?M\nV_2=75mL

Putting values in above equation, we get:

1* 0.05* 36.6=2* M_2* 75\n\nM_2=0.0122M

Hence, the concentration of Ca(OH)_2 is 0.0122 M.