A piano tuner hears a beat every 2.20 s when listening to a 266.0 Hz tuning fork and a single piano string. What are the two possible frequencies (in Hz) of the string? (Give your answers to at least one decimal place.)

Answers

Answer 1
Answer:

Answer:

The lower frequency is f_1 = 265.55 \ Hz

The higher frequency is  f_2 = 266.4546 \ Hz

Explanation:

From the question we are told that

     The period is   T  =  2.20 \ s

      The frequency of the tuning fork is  f = 266.0 \ Hz

Generally the beat frequency is mathematically represented as

       f_b  =  (1)/(T)

substituting values

      f_b  =  (1)/(2.20)

      f_b  = 0.4546 \ Hz

Since the beat  frequency is gotten from the beat produced by the tuning fork and and  the string   then

The possible frequency of the string ranges from

     f_1 =  f-  f _b

to

    f_2 =  f + f_b

Now  substituting values

    f_1 =  266.0 -  0.4546

    f_1 = 265.55 \ Hz

For  f_2

    f_2 = 266 + 0.4546

    f_2 = 266.4546 \ Hz


Related Questions

Two bullets of the same size, mass and horizontal velocity are fired at identical blocks, only one is made of steel and the other is made of rubber. The steel bullet has a perfectly inelastic collision with the block, while the rubber bullet has an elastic collision. Which bullet is more likely to knock over the block, or are both equally likely to do so? Justify your choice based on physics principles.
Two cars, one with mass mi = 1200 kg is traveling north, and the other a large car with mass m2= 3000 kg is traveling East. If they collide while each car is traveling with a speed v = 5.0 m/s, what is the car's final speed and direction (vector notation can be given as well). Assume the collision is perfectly inelastic.
The digital exchange of structured data is called ?
What is the wavelength of the photons emitted by hydrogen atoms when they undergo n =5 to n =3 transitions?
Find the magnitude and direction of an electric field that exerts a 4.80×10−17N westward force on an electron. (b) What magnitude and direction force does this field exert on a proton?

A revolutionary war cannon, with a mass of 2260 kg, fires a 21 kg ball horizontally. The cannonball has a speed of 105 m/s after it has left the barrel. The cannon carriage is on a flat platform and is free to roll horizontally. What is the speed of the cannon immediately after it was fired?

Answers

Answer:

0.97566 m/s

Explanation:

m_1 = Mass of cannon = 2260 kg

v_1 = Velocity of cannon

m_2 = Mass of ball = 21 kg

v_2 = Velocity of ball = 105 m/s

As the momentum of the system is conserved we have

m_1v_1=m_2v_2\n\Rightarrow v_1=(21* 105)/(2260)\n\Rightarrow v_1=0.97566\ m/s

The velocity of the cannon is 0.97566 m/s

7. If the impact of the golf club on the ball in the previous question occurs over a time of 2 x 10 seconds, whatforce does the ball experience to accelerate from rest to 73 m/s?

Answers

Answer:

3.65 x mass

Explanation:

Given parameters:

Time  = 20s

Initial velocity  = 0m/s

Final velocity  = 73m/s

Unknown:

Force the ball experience  = ?

Solution:

To solve this problem, we apply the equation from newton's second law of motion:

    F  =  m (v  - u)/(t)  

m is the mass

v is the final velocity

u is the initial velocity

 t is the time taken

So;

  F  = m ((73 - 0)/(20) )  = 3.65 x mass

Final answer:

To calculate the force experienced by the ball to accelerate from rest to 73 m/s, use Newton's second law of motion.

Explanation:

To calculate the force experienced by the ball to accelerate from rest to 73 m/s, we can use Newton's second law of motion, which states that force equals mass times acceleration (F = m * a).

Since the ball starts from rest, its initial velocity (vi) is 0 m/s. The final velocity (vf) is 73 m/s. The time (t) taken for the impact is given as 2 x 10 seconds. So, the acceleration (a) can be calculated using the formula a = (vf - vi) / t.

Substituting the given values into the equation, we have a = (73 - 0) / (2 x 10) = 3.65 m/s^2.

Now, we can find the force (F) using the formula F = m * a. If the mass of the ball is known, we can substitute it into the equation to find the force experienced by the ball.

Learn more about Force here:

brainly.com/question/33422584

#SPJ3

Which one defines force?

Answers

Answer:

a

Explanation:

a push or a pull that occurs when an object interacts with another object or field.

pls mrk me brainliest

Write as ordinary number 3 x 10^0

Answers

Answer:

3

Explanation:

10⁰ = 1 because anything to the power of 0 is 1.

3×1= 3

M = 30.3kg
M = 40.17kg 9
R = 0.5m
G = 6. 67x10^11
F ?​

Answers

Answer:

m¹=30.3kg

m²=40.17kg

R=0.5m

G=6.67*10¹¹

F=Gm¹m²/R²

=160.68

The starter motor of a car engine draws a current of 170 A from the battery. The copper wire to the motor is 4.60 mm in diameter and 1.2 m long. The starter motor runs for 0.930 s until the car engine starts How much charge passes through the starter motor?

Answers

Answer:

The charge that passes through the starter motor is \Delta Q=158.1 C.

Explanation:

Known Data

  • Avogadro's Number N_(A)=6.02x10^(23)
  • Current, I=170A=170(C)/(s)
  • Charge in an electron, q=1.60x10^(-19)C
  • Time, \Delta t=0.930s
  • Diameter, d=4.60mm=0.0046m
  • Transversal Area, A=((d)/(2))^(2) \pi=((0.0046m)/(2))^(2) \pi=1.66x10^(-5) m^(2)
  • Volume, V=Length*A=(1.2m)(1.66x10^(-5) m^(2))=1.99x10^(-5) m^(3)

First Step: Find the number of the electrons per unit of volume in the wire

We use the formula n=(N_(A))/(V)= (6.02x10^(23) electrons)/(1.99x10^(-5) m^(3)) =3.02x10^(28)el/ m^(3).

Second Step: Find the drag velocity

We can use the following formula v_(d)=(I)/(nqA)=(170C/s)/((3.02x10^(28)m^(-3))(1.60x10^(-19)C)(1.66x10^(-5) m^(2)))  =2.11x10^(-3) m/s

Finally, we use the formula \Delta Q=(nAv_(d)\Delta t)q=(3.02x10^(28) m^(-3))(1.66x10^(-5) m^(2))(2.11x10^(-3) m/s)(0.930s)(1.60x10^(-19)C)=158.1 C.