On what single factor does the efficiency of the Otto cycle depend?

Answers

Answer 1
Answer:

Answer:

Compression ratio(r)

Explanation:

Otto cycle:

  Otto cycle is an ideal cycle for all working petrol engine.It have four processes in which two are constant volume process and other two are reversible adiabatic or we can say that isentropic processes.All petrol engine works on Otto cycle.

The efficiency of Otto cycle given as follows

\eta =1-(1)/(r^(\gamma-1))

Where r is the compression ratio and γ is heat capacity ratio.

So from above we can say that the efficiency of Otto cycle depends onl;y on compression ratio (r).


Related Questions

What are the important factors needed to be considered while selecting a brake or clutch?
Assume that in orthogonal cutting the rake angle is 15° and the coefficient of friction is 0.15. a. Determine the percentage change in chip thickness when the coefficient of friction is doubled. Justify your answer. b. Determine the percentage change in chip thickness when the rake angle is increased to 25o . Justify your answer.
As a means of preventing ice formation on the wings of a small, private aircraft, it is proposed that electric resistance heating elements be installed within the wings. To determine representative power requirements, consider nominal flight conditions for which the plane moves at 100 m/s in air that is at a temperature of -23 degree C. If the characteristic length of the airfoil is L = 2 m and wind tunnel measurements indicate an average friction coefficient of of C_f = 0.0025 for the nominal conditions, what is the average heat flux needed to maintain a surface temperature of T_s = 5 degree C?
If you answer the whole question and show your work/coding I will rate 5 stars/brainliest!!! Walnut Orchard has two farms that grow wheat and corn. Because of different soil conditions, there are differences in the yields and costs of growing crops on the two farms. The yields and costs are shown in the following table. Each farm has 100 acres available for cultivation. 11,000 bushels of wheat and 7,000 bushels of corn must be grown. Please have an LP model to minimize the total cost while meeting the demand and solve it with Lindo or Excel. You need to have all parts of a model: notation, objective function, constraints, and sign restrictions.
Consider the products you use and the activities you perform on a daily basis. Describe three examples that use both SI units and customary units for measurement.

"Given a nodal delay of 84.1ms when there is no traffic on the network (i.e. usage = 0%), what is the effective delay when network usage = 39.3% ? (Give answer is miliseconds, rounded to one decimal place, without units. So for an answer of 0.10423 seconds you would enter "104.2" without the qu"

Answers

Answer:

Explanation:

effective delay = delay when no traffic x (100)/(100- network\r usage)

effective delay = 84.1 * (100)/(100-39.3)=138.55024711697ms

Shear modulus is analogous to what material property that is determined in tensile testing? (a)- Percent reduction of area (b) Yield strength (c)- Elastic modulus (d)- Poisson's ratio

Answers

Answer:

(c)- Elastic modulus

Explanation:

  We know that in tensile test we measure the properties of the material like yield strength,ultimate tensile strength ,Poisson ratio.

In tensile test

σ = ε E

Where σ is the stress

ε  is the strain.

E is the elastic modulus.

Now for shear tress

τ = Φ G

Where τ the shear stress

Φ  is the shear strain.

G  is the shear  modulus.

So we can say that Shear modulus is analogous to Elastic modulus.

A student takes 60 voltages readings across a resistor and finds a mean voltage of 2.501V with a sample standard deviation of 0.113V. Assuming that errors are due to random processes, how many of the readings are expected to be greater than 2.70V?

Answers

Answer:

There are 2 expected readings greater than 2.70 V

Solution:

As per the question:

Total no. of readings, n = 60 V

Mean of the voltage, \mu = 2.501 V

standard deviation, \sigma = 0.113 V

Now, to find the no. of readings greater than 2.70 V, we find:

The probability of the readings less than 2.70 V, P(X\leq 2.70):

z = (x - \mu)/(\sigma) = (2.70 - 2.501)/(0.113) = 1.761

Now, from the Probability table of standard normal distribution:

P(z\leq 1.761) = 0.9608

Now,

P(X\geq 2.70) = 1 - P(X\leq 2.70) = 1 - 0.9608 = 0.0392 = 3.92%

Now, for the expected no. of readings greater than 2.70 V:

P(X\geq 2.70) = (No.\ of\ readings\ expected\ to\ be\ greater\ than\ 2.70\ V)/(Total\ no.\ of\ readings)

No. of readings expected to be greater than 2.70 V = P(X\geq 2.70)* Total\ no.\ of\ readings

No. of readings expected to be greater than 2.70 V = 0.0392* 60 = 2.352 ≈ 2

There are three homes being built, each with an identical deck on the back. Each deck is comprised of two separate areas. One area is 112.5 square feet, while the other is136,4 square feet. What is the total square footage of the decks for all three homos? Your answer should be to the nearest tonth of a square

Answers

9514 1404 393

Answer:

  746.7 ft²

Explanation:

You can add them up, or you can take advantage of multiplication to make the repeated addition simpler.

  (112.5 ft² +136.4 ft²) +(112.5 ft² +136.4 ft²) +(112.5 ft² +136.4 ft²)

  = (3)((112.5 ft² +136.4 ft²) = 3(248.9 ft²) = 746.7 ft²

The total area of the decks on the 3 homes is 746.7 ft².

Which statement best describes how power and work are related?O A. Power is the ability to do more work with less force.
O B. Power is a measure of how quickly work is done.
O C. Power and work have the same unit of measurement
O D. Power is the amount of work needed to overcome friction.
Pls answer quick

Answers

B

a jsdnjwevhfgruewbkuwygru

The Clausius inequality expresses which of the following laws? i. Law of Conservation of Mass ii. Law of Conservation of Energy iii. First Law of Thermodynamics iv. Second Law of Thermodynamics

Answers

Answer:

(iv) second law of thermodynamics

Explanation:

The Clausius  inequality expresses the second law of thermodynamics it applies to the real engine cycle.It is defined as the cycle integral of change in entropy of a reversible system is zero. It is nothing but mathematical form of second law of thermodynamics . It also states that for irreversible process the cyclic integral of change in entropy is less than zero