Which outcome most accurately portrays the future for the timber company in the following scenario?A timber company that cuts and sells its own wood has been in high demand for the past three years. The company has gone through many acres of forest in its area, but it is sure to plant tree seeds after it bulldozes a section.

The timber company will lose business soon because not many people will need to build houses and buildings anymore.
The timber company will run out of trees quickly because the seedlings will not have enough time to become full-grown timber.
The timber company will go out of business due to the rising number of buildings using cement and concrete rather than timber.
The timber company will continue to grow because of its good business practices, and it will become the number one timber company in the country.

Answers

Answer 1
Answer:

Answer: The timber company will run out of trees quickly because the seedlings will not have enough time to become full-grown timber

Explanation: I got it right on Edge!!!! Hope this helps


Related Questions

A furnace is shaped like a long equilateral triangular duct where the width of each side is 2 m. Heat is supplied from the base surface, whose emissivity is ε1 = 0.8, at a rate of 800 W/m2 while the side surfaces, whose emissivities are 0.5, are maintained at 500 K. Neglecting the end effects, determine the temperature of the base surface. Can you treat this geometry as a two-surface enclosure?
On what single factor does the efficiency of the Otto cycle depend?
Determine the boundary work done by a gas during an expansion process if the pressure and volume values at various states are measured to be 300 kPa, 1 L; 290 kPa, 1.1 L; 270 kPa, 1.2 L; 250 kPa, 1.4 L; 220 kPa, 1.7 L; and 200 kPa, 2 L
An electric current of 237.0 mA flows for 8.0 minutes. Calculate the amount of electric charge transported. Be sure your answer has the correct unit symbol and the correct number of significant digits x10
Air expands adiabatically through a nozzle from a negligible initial velocity to a final velocity of 300 m/s, what is the temperature drop of the air, if air is assumed to be an ideal gas for which CP = (7/2)R?

The hot water needs of an office are met by heating tab water by a heat pump from 16 C to 50 C at an average rate of 0.2 kg/min. If the COP of this heat pump is 2.8, the required power input is: (a) 1.33 kW (d) 10.2 kW (b) 0.17 kW (c) 0.041 kW

Answers

Answer:

option B

Explanation:

given,

heating tap water from 16° C to 50° C

at the average rate of 0.2 kg/min

the COP of this heat pump is 2.8

power output = ?

COP = (Q_H)/(W_(in))\nW_(in) = (Q_H)/(COP)\nW_(in) = ((0.2)/(60)* 4.18* (50-16))/(2.8)\nW_(in) = 0.169

the required power input is 0.169 kW or 0.17 kW

hence, the correct answer is option B

If the specific surface energy for magnesium oxide is 1.0 J/m2 and its modulus of elasticity is (225 GPa), compute the critical stress required for the propagation of an internal crack of length 0.8 mm.

Answers

Answer:

critical stress required is  18.92 MPa

Explanation:

given data

specific surface energy = 1.0 J/m²

modulus of elasticity = 225 GPa

internal crack of length = 0.8 mm

solution

we get here one half length of internal crack that is

2a = 0.8 mm

so a = 0.4 mm = 0.4 × 10^(-3) m

so we get here critical stress that is

\sigma _c = \sqrt{(2E \gamma )/(\pi a)}     ...............1

put here value we get

\sigma _c =   \sqrt{(2* 225* 10^9 * 1 )/(\pi * 0.4* 10^(-3))}

\sigma _c =  18923493.9151 N/m²

\sigma _c =   18.92 MPa

A power plant burns natural gas to supply heat to a heat engine which rejects heat to the adjacent river. The power plant produces 800 MW of electrical power and has a thermal efficiency of 38%. Determine the heat transfer rates from the natural gas and to the river, in MW.

Answers

A. The heat transfer rate from natural gas is 2105.26 MW

B. The heat transfer rate to river is 1305.26 MW

Efficiency formula

Efficiency = (power output / power input) × 100

A. How to determine the heat transfer from natural gas

  • Efficiency = 38%
  • Power output = 800 MW
  • Power input =?

Power input = Power input / efficiency

Power input = 800 / 38%

Power input = 800 / 0.38

Power input = 2105.26 MW

Thus, the heat transfer from natural gas is 2105.26 MW

B. How to determine the heat transfer to the river

  • Total heat = 2105.26 MW
  • Heat used by plant = 800 MW
  • Heat to the river =?

Heat to the river = 2105.26 – 800

Heat to the river = 1305.26 MW

Learn more about efficiency:

brainly.com/question/2009210

Answer:

heat transfer from natural gas is 2105.26 MW

heat transfer to river is 1305.26 MW

Explanation:

given data

power output Wn = 800 MW

efficiency = 38%

solution

we know that efficiency is express as

\eta = (Wn)/(Qin)    ......................1

put here value we get

38% = (800)/(Qin)  

Qin  = 2105.26 MW

so heat supply is 2105.26

so we can say

Wn = Qin - Qout

800 = 2105.26 - Qout

Qout = 2105.26 - 800

Qout = 1305.26 MW

so heat transfer from natural gas is 2105.26 MW

and heat transfer to river is 1305.26 MW

Under the right conditions, it is possible, due to surface tension,to have metal objects float on water. Consider placing a shortlength of a small diameter steel ( γ = 490 lb/ft3)rod on a surface of water. What is the maximum diameter that therod can have before it will sink? Assume that the surface tensionforces act vertically upward. Note: A standard paper cliphas a diameter of 0.036 in. Partially unfold a paper clip and seeif you can get it to float on water. Do the results of thisexperiment support your analysis?

Answers

Answer:

A) 0.0614 inches

b) The standard steel paper clip should float on water

Explanation:

The maximum diameter that the rod can have before it will sink

we can calculate this using this formula :

D = ((8\alpha )/(\pi y ) )^{(1)/(2) } ----- 1

∝ = value of surface tension of water at 60⁰f  = 5.03×10^−3  lb/ft

y = 490 Ib/ft^3

input the given values into equation 1 above

D = ((8*(5.3*10^(-3)) )/(\pi *490 ) )^{(1)/(2) }

   = 5.11 * 10^-3 ft   convert to inches

   = 5.11 *10^-3 ( 12 in/ 1 ft ) = 0.0614 inches

B) The diameter of a standard paper Cliphas = 0.036 inches

and the diameter of the rod = 0.0614. Hence the standard steel paper clip should float on water

Describe the difference between design guidelines or criteria and design performance. Explain the relationship between the use of guideline/criteria tools and performance tools during the design process

Answers

Answer:

PART A

Design guidelines are sets of procedures to be followed in order to enhance the designing of an object or other things.

Design Performance is the actual process of carrying out the design process of an object using the design guidelines or criteria.

PART B

(1) Design guidelines tools helps to enhance design Performance.

(2) Design guidelines tools helps the designing performance tools to be effective.

Explanation:Design guidelines are the various steps which has special tools used to guide the designer in order to enhance the designing performance tools and ensure that the design process is done devoid of errors.

Design Performance tools are tools which helps to enhance the actual design Activities.

Steam enters a turbine from a 2 inch diameter pipe, at 600 psia, 930 F, with a velocity of 620 ft/s. It leaves the turbine at 12 psia with a quality of 1.0, through an outlet duct 1 ft in diameter. Calculate the turbine power output

Answers

Answer:

\dot W_(out) = 3374.289\,(BTU)/(s)

Explanation:

The model for the turbine is given by the First Law of Thermodynamics:

- \dot W_(out) + \dot m \cdot (h_(in) - h_(out)) = 0

The turbine power output is:

\dot W_(out) = \dot m\cdot (h_(in)-h_(out))

The volumetric flow is:

\dot V = (\pi)/(4) \cdot \left( (2)/(12)\,ft \right)^(2)\cdot (620\,(ft)/(s) )

\dot V \approx 13.526\,(ft^(3))/(s)

The specific volume of steam at inlet is:

State 1 (Superheated Steam)

\nu = 1.33490\,(ft^(3))/(lbm)

The mass flow is:

\dot m = (\dot V)/(\nu)

\dot m = (13.526\,(ft^(3))/(s) )/(1.33490\,(ft^(3))/(lbm) )

\dot m = 10.133\,(lbm)/(s)

Specific enthalpies at inlet and outlet are, respectively:

State 1 (Superheated Steam)

h = 1479.74\,(BTU)/(lbm)

State 2 (Saturated Vapor)

h = 1146.1\,(BTU)/(lbm)

The turbine power output is:

\dot W_(out) = (10.133\,(lbm)/(s) )\cdot (1479.1\,(BTU)/(lbm)-1146.1\,(BTU)/(lbm))

\dot W_(out) = 3374.289\,(BTU)/(s)

Other Questions